Forecasting Constraints from Peculiar Velocity Power Spectrum - Fisher Matrix Analysis

Jun Koda
Swinburne University of Technology with Chris Blake

Cosmic Flow: In The Rain Forest, 2I Feb 2012

Peculiar Velocity

from Tully-Fisher/fundamental plane/supernovae
$z_{\text {pec }}=z_{\text {meas }}-z_{\text {Hubble }}$
$\mathcal{F}=\frac{L_{\text {abs }}}{4 \pi d_{L}\left(z_{\text {Hubble }}\right)}$
Uncertainty in absolute luminosity
$\rightarrow 20 \%$ uncertainty in Hubble velocity
$\Delta v_{p e c} \approx 0.2 H_{0} d$

$$
\approx 6000\left(\frac{z}{0.1}\right) \mathrm{km} / \mathrm{s} \text { per galaxy }
$$

This increasing uncertainty is the main disadvantage

Peculiar Velocity in Fourier Space

$u \equiv v \cdot \hat{r} \approx v_{3} \quad($ plane parallel $)$

In linear theory,
$u_{k}=\frac{i H_{0} f \mu}{k} \delta_{k}$
where,

$$
\begin{aligned}
& \mu \equiv \cos \theta \equiv k \cdot \hat{r} / k \\
& f \equiv d \ln D / d \ln a \approx \Omega_{m}^{\gamma} \quad(\gamma=0.55)
\end{aligned}
$$

f is an interesting quantity to constrain

Constraints from
 Velocity Power Spectrum (alone)

$$
P_{u u}(k)=\frac{1}{V}\left\langle u_{k}^{*} u_{k}\right\rangle
$$

Fisher Matrix $\theta=\left(f, \sigma_{8}, h, \Omega_{m}, \Omega_{b}, \ldots\right)$

$$
\begin{aligned}
& F_{i j}=\frac{1}{2} \int \frac{d^{3} r d^{3} k}{(2 \pi)^{3}} \frac{\partial P}{\partial \theta_{i}} \frac{\partial P}{\partial \theta_{j}} \frac{1}{(\Delta P)^{2}} \\
& \begin{aligned}
&\left\langle\Delta \theta_{i} \Delta \theta_{j}\right\rangle=\left(F^{-1}\right)_{i j} \Delta P=P \quad \text { cosmic variance } \\
& \Delta P_{g g}=P_{g g}+n^{-1} \quad \text { galaxy shot noise } \\
& \Delta P_{u u}=P_{u u}+\frac{\sigma_{v}^{2}}{n} \text { pec. vel. measurement error }
\end{aligned}
\end{aligned}
$$

Number density in WALLABY Survey

- HI Mass Function

- Spectral flux density $\mathcal{f}>5 \mathrm{mJy}$
- V_{c} width $\omega>100 \mathrm{~km} / \mathrm{s}$

Constraints from Velocity Power Spectrum (alone)

- 20,000 deg ${ }^{2}$
- WALLABY $n(z)$
- $\sigma_{\mathrm{v}}-0.20 \times H_{o} d$

$\Delta f \sigma_{8}$		
$k_{\max }$	fixed	mar.
0.1	6.4%	56%
0.2	5.0%	31%

Constraints from Velocity Power Spectrum (alone)

- 20,000 deg ${ }^{2}$
- WALLABY $n(z)$
- $\sigma_{\mathrm{v}}-0.20 \times H_{o} d$

Constrains from $\delta \& u$ combined

Toy Model (linear theory in real space)

$$
\begin{gathered}
\left\{\begin{array}{l}
\begin{array}{l}
\delta_{g}=b \delta_{m} \\
u \\
u
\end{array} \\
\text { or } \frac{i H_{0} f \mu}{k} \delta_{m}
\end{array}\right. \\
u=(f / b) \frac{i H_{0} \mu}{k} \delta_{g}
\end{gathered}
$$

$\delta_{m}(\mathrm{k})$ are random Gaussian variables with variance $P(k)$, but that randomness and cosmological parameter dependence cancels out for $\beta \equiv f / b$.

Constrains from $\delta \& u$ combined

Toy Model (linear theory in real space)

$$
\left.\right]
$$

Good constraint on β, but $\operatorname{good} b$ needed for f

Constrains from $\delta \& u$ combined

Toy Model (linear theory in real space)

- $b \sigma_{8}$ is (probably) easy to measure with some prior on cosmological parameters
few $\%$ constraint on $b \sigma_{8}$
2% constraint on f / b
\downarrow
few $\%$ constraint on $f \sigma_{8}$ (?)

Constrains from $\delta \& u$ combined

 Toy Model (linear theory in real space)- $b \sigma_{8}$ is (probably) easy to measure with some prior on cosmological parameters
around here
few $\%$ constraint on $b \sigma_{8}$
2% constraint on f / b
few $\%$ constraint on $f \sigma_{8}$ (?)

White 2009 MNRAS 397, 1348 (Fisher matrix analysis for RSD)

Constrains from $\delta \& u$ combined

linear theory + some redshift-space distortion

Theoretical Work needed to be done

(a lot!)

- Nonlinear velocity power spectrum
\Rightarrow systematic effect on β estimation
\Rightarrow HaloFit for velocity power spectrum?
\Rightarrow cosmological dependence may affect β precision

Calson, White \& Padmanabhan 2009 Phys. Rev. D MNRAS 80, 043531

Theoretical Work needed to be done

(a lot!)

- Redshift-space distortion of velocity power
- Linear effect?
\Rightarrow Nonlinear damping/smoothing?
\Rightarrow Any new information?

Theoretical Work needed to be done (a lot!)

- Bias b; bottle neck of measuring f
\Rightarrow bispectrum/HOD?
\Rightarrow how precise can we determine?

Summary

- $f \sigma_{8}$ can be measured -5% from $P_{u u}$
- $\beta=f / b \quad 2 \%$ No cosmic variance/cosmological parameter dependence (on leading order)
\Rightarrow for GR f, good measurement of b or $b(k)$
$\Rightarrow b$ is the limiting factor for f
- $f \sigma_{8}-3 \%$ with δ_{g}, u and accurate cosmological parameters (I guess...)
- Is this worth doing? Any other way of analysis?

Jun Koda, Cosmic Flow Workshop, 21 Feb 2012

