Forecasting Constraints from Peculiar Velocity Power Spectrum – Fisher Matrix Analysis

Swinburne University of Technology with Chris Blake

Cosmic Flow: In The Rain Forest, 21 Feb 2012

Peculiar Velocity from Tully-Fisher/fundamental plane/supernovae

 $z_{pec} = z_{meas} - z_{Hubble}$ $\mathcal{F} = rac{L_{abs}}{4\pi d_L(z_{Hubble})}$

Uncertainty in absolute luminosity \rightarrow 20% uncertainty in Hubble velocity

$$\Delta v_{pec} \approx 0.2H_0 d$$

$$\approx 6000 \left(\frac{z}{0.1}\right) \text{ km/s} \text{ per galaxy}$$

This increasing uncertainty is the main disadvantage

Peculiar Velocity in Fourier Space

 $u \equiv v \cdot \hat{r} \approx v_3$ (plane parallel)

In linear theory,

$$u_k = \frac{iH_0f\mu}{k}\delta_k$$

where,

 $\mu \equiv \cos \theta \equiv k \cdot \hat{r}/k$ $f \equiv d \ln D/d \ln a \approx \Omega_m^{\gamma} \quad (\gamma = 0.55)$

f is an interesting quantity to constrain

Constraints from Velocity Power Spectrum (alone)

$$P_{uu}(k) = \frac{1}{V} \langle u_k^* u_k \rangle$$

Fisher Matrix $\theta = (f, \sigma_8, h, \Omega_m, \Omega_b, ...)$ $F_{ij} = \frac{1}{2} \int \frac{d^3r d^3k}{(2\pi)^3} \frac{\partial P}{\partial \theta_i} \frac{\partial P}{\partial \theta_j} \frac{1}{(\Delta P)^2}$

$$\langle \Delta \theta_i \Delta \theta_j \rangle = (F^{-1})_{ij}$$
 $\Delta P = P \quad \text{cosmic variance}$

$$\Delta P_{gg} = P_{gg} + n^{-1} \quad \text{galaxy shot noise}$$

$$\Delta P_{uu} = P_{uu} + \frac{\sigma_v^2}{n} \quad \text{pec. vel. measurement error}$$

Burkey & Taylor 2004 MNRAS 347, 255 (for 6dF survey)

Number density in WALLABY Survey

HI Mass Function
Spectral flux density *J* > 5 mJy *V_c* width *w* > 100 km/s

Constraints from Velocity Power Spectrum (alone)

20,000 deg²
WALLABY n(z)
σ_v ~ 0.20 × H₀ d

Constraints from Velocity Power Spectrum (alone)

20,000 deg²
WALLABY n(z)
σ_v ~ 0.20 × H_o d

 $\delta_{m}(k)$ are random Gaussian variables with variance P(k), but that randomness and cosmological parameter dependence cancels out for $\beta = f/b$.

... and this is at z=0, when $\Omega_m < I$

(Fihser matrix of correlated $\delta \& u$)

 bσ₈ is (probably) easy to measure with some prior on cosmological parameters

few % constraint on $b\sigma_8$ × 2% constraint on f/b↓ few % constraint on $f\sigma_8$ (?)

White 2009 MNRAS 397, 1348 (Fisher matrix analysis for RSD)

Theoretical Work needed to be done (a lot!)

Nonlinear velocity power spectrum

 \implies systematic effect on β estimation

→ HaloFit for velocity power spectrum?

 \Rightarrow cosmological dependence may affect β precision

Calson, White & Padmanabhan 2009 Phys. Rev. D MNRAS 80, 043531

Theoretical Work needed to be done (a lot!)

- Redshift-space distortion of velocity power
 - ➡ Linear effect?
 - Nonlinear damping/smoothing?
 - Any new information?

Theoretical Work needed to be done (a lot!)

- Bias *b*; bottle neck of measuring *f*
 - ➡ bispectrum/HOD?
 - → how precise can we determine?

Summary

- $f\sigma_8$ can be measured -5% from P_{uu}
- $\beta = f/b \ 2\%$ No cosmic variance/cosmological parameter dependence (on leading order)
 - for GR f, good measurement of b or b(k)
 b is the limiting factor for f
- $f\sigma_8 3\%$ with δ_g , u and accurate cosmological parameters (I guess...)
- Is this worth doing? Any other way of analysis? Jun Koda, Cosmic Flow Workshop, 21 Feb 2012