

Motivation

- The Baryonic Acoustic Feature has been detected to a significance of 5σ (WiggleZ+SDSS-II+6dFGRS; Blake et al. 2011c)
- So far the feature has been mostly used to measure the degenerate combination: D_A^2/H
- The ultimate holy grail is measuring H(z) independently in order to examine the nature of the accelerating Universe

Disentanglement Discussion

* Within redshift clustering - going under the hood

With various data sets (SNe, photometric clustering and other distance measures)

The Baryonic Acoustic Feature as a Standard Ruler

Doing better than D_A²/H

- For S/N reasons, most observational studies focus on angle averaged ξ_0 signals
- Due to geometric arguments, the information in ξ_0 is degenerate: D_A^2/H
- Anisotropic clustering constrains D_AH : 2D plane (" π - r_p "), 1D statistics (ξ_2 or $\xi(\Delta\mu)$)

Disentangling H-DA Degeneracy (simulated results)

Eyal Kazin, Swinburne GEM December 7th 2011

The Alcock Paczynski effect

Template (here I use mock true signal) ``data" (here I use mock signal affected by AP) fit (here I fit Template to ``data" varing H and D_A)

 $-0.0092 - 0.0077 - 0.0023 \quad 0.017 \quad 0.084 \quad 0.32 \quad 1.2 \quad 4.1 \quad 14.7$

What methods & data are out there?

data type	measures	survey, z
z clustering	(D _A ²/H(z))/r _s ³, H(z)*D _A , D _A /r _s , H*r _s	SDSS-II <0.5, SDSS-III <0.7, <3.5, WiggleZ<0.8, HetDex 1.9 <z<3.5< td=""></z<3.5<>
other Alcock Paczynski: stacking voids, pair count orientation	H(z)*D _A	SDSS-III<0.7
photometric clustering	D _A /r _s	SDSS-III<0.7, DES, Panstarrs
CMB DT/T	r _s ∝1/√(Ω _M H₀²), D _A (z*)	WMAP, Planck etc z~1100
SNe	low z: H₀, high z: D∟*H₀	HST, Union 2 etc.
other low z: Cepheid Variables, Masers, Tully-Fisher, Surface brightness fluctuations	Ho	
f _{gas} (assumed constant in z)	D∟* √ DA	XEUS
Active Galactic Nuclei "reverberation"	$D_{L} = (1+z)^{2} D_{A}$	
Radio galaxies accretion disks		
futuristic: lensed CMB	$D_{A}(z)/D_{A}(z^{*})$	
futuristic: gravitational waves as standard sirens	DL	

Combinations

- z-clustering at high z+ CMB -> D_A²/H(z), D_A(z), H(z)
 z-clustering at low z + CMB -> H₀ (Beutler et al. 2011)
 z-clustering + S/N: H(z)/H₀~å/å₀ (Blake et al. 2011)
 tests of D_L(z)=(1+z)² D_A? Learn about dust, photon decay to axion?
- # H(z,R.A,Dec)? Back-reaction?

Parameter Degeneracy

CAASTRO

Geometric Redshift Distortions

Eyal Kazin, Swinburne GEM December 7th 2011

DYNAMICAL VS. GEOMETRICAL:

Testing Las Damas mock LRGs

Real Space

Dynamical z - distortions

DYNAMICAL VS. GEOMETRICAL: Testing LasDamas mock LRGs

