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Motivation

The Baryonic Acoustic Feature has been detected to a 
significance of 5! (WiggleZ+SDSS-II+6dFGRS; Blake et al. 2011c)

So far the feature has been mostly used to measure the 
degenerate combination: DA2/H

The ultimate holy grail is measuring H(z)
independently in order to examine the nature of the 
accelerating Universe

Eyal Kazin, Cosmic Flows in the Rain Forest February 20th 2012



Disentanglement 
Discussion

Within redshift clustering - going under the hood

With various data sets (SNe, photometric 
clustering and other distance measures)

Eyal Kazin, Cosmic Flows in the Rain Forest February 20th 2012



The Baryonic Acoustic Feature
as a Standard Ruler

Surface of last scattering
z~1100

WMAP 7-year Cosmological Interpretation 13

Fig. 7.— The WMAP 7-year temperature power spectrum (Larson et al. 2010), along with the temperature power spectra from the
ACBAR (Reichardt et al. 2009) and QUaD (Brown et al. 2009) experiments. We show the ACBAR and QUaD data only at l ≥ 690, where
the errors in the WMAP power spectrum are dominated by noise. We do not use the power spectrum at l > 2000 because of a potential
contribution from the SZ effect and point sources. The solid line shows the best-fitting 6-parameter flat ΛCDM model to the WMAP data
alone (see the 3rd column of Table 1 for the maximum likelihood parameters).

systematic error is minimized by calibrating su-
pernova luminosities directly using the geometric
maser distance measurements. This is a significant
improvement over the prior that we adopted for
the 5-year analysis, H0 = 72 ± 8 km s−1 Mpc−1,
which is from the Hubble Key Project final results
(Freedman et al. 2001).

• Gaussian priors on the distance ratios, rs/DV (z =
0.2) = 0.1905 ± 0.0061 and rs/DV (z = 0.35) =
0.1097 ± 0.0036, measured from the Two-Degree
Field Galaxy Redshift Survey (2dFGRS) and the
Sloan Digital Sky Survey Data Release 7 (SDSS
DR7) (Percival et al. 2009). The inverse covariance
matrix is given by equation (5) of Percival et al.
(2009). These priors are improvements from those
we adopted for the 5-year analysis, rs/DV (z =
0.2) = 0.1980 ± 0.0058 and rs/DV (z = 0.35) =
0.1094± 0.0033 (Percival et al. 2007).

The above measurements can be translated into a
measurement of rs/DV (z) at a single, “pivot” red-
shift: rs/DV (z = 0.275) = 0.1390 ± 0.0037 (Per-
cival et al. 2009). Kazin et al. (2010) used the
two-point correlation function of SDSS-DR7 LRGs
to measure rs/DV (z) at z = 0.278. They found
rs/DV (z = 0.278) = 0.1394 ± 0.0049, which is an
excellent agreement with the above measurement
by Percival et al. (2009) at a similar redshift. The
excellent agreement between these two independent
studies, which are based on very different methods,

indicates that the systematic error in the derived
values of rs/DV (z) may be much smaller than the
statistical error.

Here, rs is the comoving sound horizon size at the
baryon drag epoch zd,

rs(zd) =
c√
3

∫ 1/(1+zd)

0

da

a2H(a)
√

1 + (3Ωb/4Ωγ)a
. (15)

For zd, we use the fitting formula proposed by
Eisenstein & Hu (1998). The effective distance
measure, DV (z) (Eisenstein et al. 2005), is given
by

DV (z) ≡
[

(1 + z)2D2
A(z)

cz

H(z)

]1/3

, (16)

where DA(z) is the proper (not comoving) angular
diameter distance:

DA(z) =
c

H0

fk
[

H0

√

|Ωk|
∫ z
0

dz′

H(z′)

]

(1 + z)
√

|Ωk|
, (17)

where fk[x] = sinx, x, and sinhx for Ωk < 0
(k = 1; positively curved), Ωk = 0 (k = 0; flat),
and Ωk > 0 (k = −1; negatively curved), respec-
tively. The Hubble expansion rate, which has con-
tributions from baryons, cold dark matter, pho-
tons, massless and massive neutrinos, curvature,
and dark energy, is given by equation (27) in Sec-
tion 3.3.

Larson et al. (2010)
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Doing better than DA2/H

For S/N reasons, most observational studies focus on 
angle averaged !0  signals 

Due to geometric arguments, the information in !0 is 
degenerate: DA2/H

Anisotropic clustering constrains DAH: 
2D plane (“"-rp”), 1D statistics (!2 or !(#$))

Eyal Kazin, Cosmic Flows in the Rain Forest February 20th 2012



Disentangling H-DA Degeneracy
(simulated results)
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χ(z)= c∫  dz’
zobs

0 H(z’,Ω)
_____

Redshift Distortions: 
Dynamical vs. Geometrical

Dynamical:  squashing (kaiser 1987), Finger of God 

Geometrical: AP effect (Alcock&Paczynski 1979)

comoving distance

Eyal Kazin, Swinburne GEM December 7th 2011



The Alcock Paczynski effect

Improving measurements of H(z) and DA(z) by analyzing clustering anisotropies 9

Figure 3. Mock mean clustering projections (based 160 LasDamas realizations) with and without the AP effect. Left: real-space. Right:
velocity-space. Top: multipoles (applying Equations 19, 20). Bottom: ∆µ = 1/2 wedges (Equations 21-24). In the top panel of each plot
are the 1D projections, and in the bottom panels the difference of each result with the DISTORTED signal (labeled as AP) normalized by
the uncertainty of one realization. As indicated in legend, black solid lines/symbols are the true projection signals ( T ), the long-dashed
red lines are the AP signals (D). We apply the AP shift to the true signals to obtain the triple-dot-dashed blue lines/symbols (S). A
perfect shift would yield a null result for the blue symbols in the bottom panels. The dot-dashed purple and dashed orange lines, as
indicated in the legend, are the first order ε correction terms. The AP distortion applied here is using wFID = −1.1 instead of the true
value −1 when converting z to comoving distances.

4.2 Reproducing the true H and DA

Here we perform the AP test on the LRG SDSS-II mock
catalogues described in §2.2 to measure H and DA. When
quoting uncertainties in these parameters, we show what
might be expected for a survey with the same number den-
sity as SDSS-II (n ∼ 10−4 h3Mpc−3) but a volume twelve
times larger, corresponding to the total Hubble volume (i.e,
a sphere of radius c/H0).

To simulate the observer’s point of view, we assume the
ξD measurements to be the “data” points. We then find the

best fitting models based on physical templates. Our first
step is to perform an ideal test, where the template is the
ξ T mock mean signal. In other words, we are not concerning
ourselves, at this point, with uncertainties beyond the AP
effect. For example, this means we assume that we fully un-
derstand the amplitude “bias”, and dynamical z-distortions.
We consider this merely as a “proof of concept” of the anal-
ysis, and in §4.3 take a more realistic approach by adding
more unknowns.

In §2.1 we describe the construction of the covariance

c© 0000 RAS, MNRAS 000, 000–000

Template (here I use mock true signal)
``data” (here I use mock signal affected by AP)
 fit (here I fit Template to ``data” varing H and DA)

Eyal Kazin, Cosmic Flows in the Rain Forest February 20th 2012
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Disentangling H-DA Degeneracy
(mock galaxy results)

Hexadecapole ξ4 improves 
H constraints Eyal Kazin(See also Taruya et al. 2011)
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Figure 1. Mean two-dimensional correlation functions ξ(µ, s) from the ensemble of mock catalogues in real- (left) and velocity-space
(right). The solid contour lines, following the color scheme, correspond to the result obtained when using the correct cosmology when
converting z to comoving distances. The dashed lines show the geometrical distortions obtained by assuming wD = −1.1 instead of the
true value wT = −1. It can be clearly seen that dynamical effects dominate over the geometric.

3 THEORY

3.1 Redshift distortions: geometric vs. dynamic

Redshift distortions arise due to two effects when converting
the redshift zobs of a galaxy into a comoving distance:

χ = c

∫ zobs

0

dz
H(z)

. (3)

The first effect involves the assumption that the observed
redshift is produced entirely by the expansion of the Uni-
verse zcos. This assumption is, of course, incorrect in the
presence of peculiar velocities, which introduce an additional
Doppler component zpec leading to radial shifts in the in-
fered distances. Although these shifts are small compared
to the true distance χ(zcos) (less than 1% at z ∼ 0.3), they
strongly affect clustering measurements which depend on
separations between galaxies. We refer to these as dynami-

cal distortions.
Another, more subtle, redshift distortion effect arises

due to the conversion of redshift to distance using only ap-
proximately known cosmological parameters. The conver-
sion relies on the Hubble parameter, which can be derived
as:

(4)

H(z)2 = H2
0

(

ΩM0 (1 + z)3 + ΩK (1 + z)2

+ ΩDEe
3
∫
z

0

1+w(z′)
1+z

′
dz′

)

,

where Ωi are the standard cosmological density terms at
present day for matter (M0), curvature (K) and dark energy
(DE). The Hubble constant H0 ≡ H(0) (Hubble & Huma-
son 1931, although see Lemâıtre 1927) factors out trivially
and we thus express comoving distance in units of h−1Mpc,
where h ≡ H0/(100 km s−1Mpc−1). The rest of the param-

eters have more important, and potentially measurable, ef-
fects. We refer to these AP effects as geometric distortions.

One way of overcoming these effects is to recalculate
clustering statistics for every set of parameters when de-
termining cosmological constraints. However, that approach
is currently not practical. Instead, we calculate ξ using a
fixed fiducial set of parameters, and vary the result using
linear equations. As we show below, this method is accurate
enough.

Figure 1 illustrates dynamic and geometric distortions
in the LasDamas mock catalogues using the anisotropic ξ in
the µ − s plane. The information in this coordinate choice
is similar to that in the commonly used s|| − s⊥ plane.
We define #s to be the spatial separation vector with ra-
dial and transverse components s||, s⊥. In real-space (left
panel) the true signal corresponds to flat horizontal contour
levels in ξ(µ, s), shown as colored contours (solid lines) A
noticeable signature is the baryonic acoustic feature around
s ∼ 110h−1Mpc.

The dashed lines show the result obtained when we in-
troduce geometric distortions by using w = −1.1 instead of
the true value w = −1 when converting redshifts to comov-
ing distance. These distortions are more noticeable at large
scales, though they are also present on small scales.

The right-hand panel illustrates the equivalent measure-
ments with the addition of dynamical distortions (velocity-
space). Meaning, the solid lines correspond to the true
velocity-space result, and the dashed lines show the effect
of geometric distortions. It can be clearly seen that the dy-
namical distortions dominate over the geometric ones.

Three noticeable features are worth mentioning here.
First, the velocity dispersion effect is clearly seen in the
clustering signal along the line of sight (µ = 1). Although
commonly regarded as a small scale effect, it is still present
on scales of 60h−1Mpc, as discussed by Scoccimarro (2004).

c© 0000 RAS, MNRAS 000, 000–000

Kazin, Sanchez & Blanton (2011)

Clustering 2D plane
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μ=s||/s
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Figure 1. Mean two-dimensional correlation functions ξ(µ, s) from the ensemble of mock catalogues in real- (left) and velocity-space
(right). The solid contour lines, following the color scheme, correspond to the result obtained when using the correct cosmology when
converting z to comoving distances. The dashed lines show the geometrical distortions obtained by assuming wD = −1.1 instead of the
true value wT = −1. It can be clearly seen that dynamical effects dominate over the geometric.

3 THEORY

3.1 Redshift distortions: geometric vs. dynamic

Redshift distortions arise due to two effects when converting
the redshift zobs of a galaxy into a comoving distance:

χ = c

∫ zobs

0

dz
H(z)

. (3)

The first effect involves the assumption that the observed
redshift is produced entirely by the expansion of the Uni-
verse zcos. This assumption is, of course, incorrect in the
presence of peculiar velocities, which introduce an additional
Doppler component zpec leading to radial shifts in the in-
fered distances. Although these shifts are small compared
to the true distance χ(zcos) (less than 1% at z ∼ 0.3), they
strongly affect clustering measurements which depend on
separations between galaxies. We refer to these as dynami-

cal distortions.
Another, more subtle, redshift distortion effect arises

due to the conversion of redshift to distance using only ap-
proximately known cosmological parameters. The conver-
sion relies on the Hubble parameter, which can be derived
as:

(4)

H(z)2 = H2
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where Ωi are the standard cosmological density terms at
present day for matter (M0), curvature (K) and dark energy
(DE). The Hubble constant H0 ≡ H(0) (Hubble & Huma-
son 1931, although see Lemâıtre 1927) factors out trivially
and we thus express comoving distance in units of h−1Mpc,
where h ≡ H0/(100 km s−1Mpc−1). The rest of the param-

eters have more important, and potentially measurable, ef-
fects. We refer to these AP effects as geometric distortions.

One way of overcoming these effects is to recalculate
clustering statistics for every set of parameters when de-
termining cosmological constraints. However, that approach
is currently not practical. Instead, we calculate ξ using a
fixed fiducial set of parameters, and vary the result using
linear equations. As we show below, this method is accurate
enough.

Figure 1 illustrates dynamic and geometric distortions
in the LasDamas mock catalogues using the anisotropic ξ in
the µ − s plane. The information in this coordinate choice
is similar to that in the commonly used s|| − s⊥ plane.
We define #s to be the spatial separation vector with ra-
dial and transverse components s||, s⊥. In real-space (left
panel) the true signal corresponds to flat horizontal contour
levels in ξ(µ, s), shown as colored contours (solid lines) A
noticeable signature is the baryonic acoustic feature around
s ∼ 110h−1Mpc.

The dashed lines show the result obtained when we in-
troduce geometric distortions by using w = −1.1 instead of
the true value w = −1 when converting redshifts to comov-
ing distance. These distortions are more noticeable at large
scales, though they are also present on small scales.

The right-hand panel illustrates the equivalent measure-
ments with the addition of dynamical distortions (velocity-
space). Meaning, the solid lines correspond to the true
velocity-space result, and the dashed lines show the effect
of geometric distortions. It can be clearly seen that the dy-
namical distortions dominate over the geometric ones.

Three noticeable features are worth mentioning here.
First, the velocity dispersion effect is clearly seen in the
clustering signal along the line of sight (µ = 1). Although
commonly regarded as a small scale effect, it is still present
on scales of 60h−1Mpc, as discussed by Scoccimarro (2004).
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Fig. 12.— Left panel: The χ2 surfaces along α after systematics correction for Figure 11 when marginalized over other parameters (red
line). The blue line shows the χ2 surface when the BAO is removed from the template. Right panel: a stacked Cl/Cl,sm of the four panels
of Figure 11 after systematics correction. To better visualize the BAO feature we measured, we shift the wavenumbers of the four power
spectra by DA(zmedian)/DA(z = 0.54), re-bin the combined band powers while inversely weighting by errors. The solid red line is the best
fit for CMASS2, after the wavenumber is rescaled to z = 0.54.

TABLE 3
The derived cosmological parameters.

wCDM oCDM
Ωm 0.2912 (0.2917) ± 0.0270 0.2939 (0.2952) ± 0.0170
h 0.6884 (0.6892) ± 0.0392 0.6748 (0.6715) ± 0.0175
w −1.0185 (−1.0337) ± 0.1862 Fixed at w = −1.0
ΩΛ 0.7088 (0.7083) ± 0.2705 0.7118 (0.7116) ± 0.0172
ΩK Fixed at ΩK = 0.0 −0.0057 (−0.0067) ± 0.0058

Note. — Marginalized fit and errors associated with the
fit on selective parameters that are derived using COSMOMC
(Lewis & Bridle 2002) for two different cosmologies. The value
inside the parentheses show the best fit values.

for our fiducial ΛCDM. Note that the measurements be-
yond z = 0.35 have a tendency to imply the location of
the BAO at a smaller scale than the concordance ΛCDM
(i.e., a larger DA(z) than the fiducial cosmology), in-
cluding our DA measurement (∼ 1.4σ away). Due to
nonlinear structure formation and galaxy bias, we ex-
pect about a ∼ 0.5% of bias towards a smaller value
on the measured BAO scale (Crocce & Scoccimarro
2008; Padmanabhan & White 2009; Seo et al. 2010;
Mehta et al. 2011), which has not been accounted in
these measurements. Such correction will slightly im-
prove the consistency between the BAO measurements
and the concordance ΛCDM, but it is overall a very small
effect for the current level of errors. The circles along the
dashed line and the crosses along the dot-dashed line in
Figure 13 show the expected DA(z) and H(z) based on
our best fit wCDM and oCDM cosmologies from COS-
MOMC (Lewis & Bridle 2002) that will be explained be-
low.
We use COSMOMC (Lewis & Bridle 2002) to combine

BAO measurements from the various galaxy surveys with
the WMAP7 data (Komatsu et al. 2011) to derive con-
straints on cosmological parameters. For BAO measure-
ments, we use DV (z = 0.2)/rs and DV (z = 0.35)/rs
from SDSS DR7 (Percival et al. 2010), DV (z = 0.44)/rs,

Fig. 13.— Various BAO measurements in comparison to the
concordance ΛCDM. The measurement of DA(z = 0.54) from
this paper is shown with the black horizontal line. The gray
shade represents 1− σ error. Red lines with magenta shades show
DV (z = 0.2)/rs and DV (z = 0.35)/rs from Percival et al. (2010)
and the green line shows DV (z = 0.6)/rs from Blake et al. (2011b).
The black squares along the diagonal dotted line show the expected
combination of DA(z) and H based on the concordance ΛCDM at
the redshifts of the data. One sees that the data beyond z = 0.35
observed the BAO at a slightly smaller scale (i.e., a larger dis-
tance) than the concordance ΛCDM. The circles along the dashed
line and the crosses along the dot-dashed line show the expected
DA(z) and H based on the best fit wCDM and oCDM cosmologies
in Table 3.

DV (z = 0.60)/rs, and DV (z = 0.73)/rs from WiggleZ39,
and DA(z)(0.54)/rs from this work. The WMAP7 data

39 For COSMOMC, we use the three-redshift slice representation
of the WiggleZ data from Blake et al. (2011b), i.e., 0.2 < z < 0.6,
0.4 < z < 0.8, and 0.6 < z < 1.0, accounting for the covariance
among them, while in Figure 13 we show the result for the whole
redshift range (0.2 < z < 1.0). Note that the distance measure-
ments from the WiggleZ data include non-BAO information.

Seo et al. (2012, submitted)

Eyal Kazin, Cosmic Flows in the Rain Forest February 20th 2012
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0.3 h Mpc−1 are displayed as the red and green data points
in Figure 3. As a further test we repeated the measurements
of F for independent scale ranges k = 0− 0.1, 0.1− 0.2 and
0.2 − 0.3 h Mpc−1; the results were consistent within the
statistical errors.

Our analysis uses an underlying isotropic matter power
spectrum that is consistent with the latest observations of
the Cosmic Microwave Background radiation (Komatsu et
al. 2011). In order to show that this does not introduce any
sensitivity to the model into our analysis we checked that
our results were unchanged if we instead generated a func-
tion proportional to Pm(k) using a polynomial fit to the ob-
served, angle-averaged galaxy power spectrum in the fiducial
model; this comparison is shown as the magenta data points
in Figure 3. The similarity between these measurements and
our fiducial results provides further evidence that the baryon
acoustic oscillations (which do not appear in a smooth poly-
nomial model) are not contributing any information to the
Alcock-Paczynski distortion fits.

We conclude from these tests that the systematic error
in F induced from modelling redshift-space distortions is
much lower than the statistical error in the measurement.
Our results are therefore insensitive to the model adopted
(to first order), even though a series of model assumptions
are necessary to produce these fits.

4 DETERMINATION OF THE COSMIC

EXPANSION HISTORY

We converted our Alcock-Paczynski measurements of the
scale distortion parameter F (z) = (1+z)DA(z)H(z)/c into a
determination of the cosmic expansion history H(z) by using
Type Ia supernovae (SNe Ia) data to fix the cosmic distance-
redshift relation. We used the “Union-2” compilation by
Amanullah et al. (2010) as our supernovae dataset, obtained
from the website http://supernova.lbl.gov/Union. This
compilation of 557 supernovae includes data from Hamuy
et al. (1996), Riess et al. (1999, 2007), Astier et al. (2006),
Jha et al. (2006), Wood-Vasey et al. (2007), Holtzman et al.
(2008), Hicken et al. (2009) and Kessler et al. (2009).

Given that the normalization of the supernova Hub-
ble diagram M − 5 log10h is treated as an unknown pa-
rameter, the supernovae data yields the relative luminosity
distance DL(z)H0/c. We determined a model-independent
value of this quantity in each redshift slice by fitting the
distance-redshift relation as a 3rd-order polynomial in z
(over the redshift range 0 < z < 0.9) and marginaliz-
ing over the values of the polynomial coefficients. We used
the full covariance matrix of the supernovae measurements
including systematic errors, and checked that our results
were not significantly changed by assuming a 2nd-order or
4th-order polynomial instead. Our results at the four red-
shifts z = (0.22, 0.41, 0.6, 0.78) were DA(z)H0/c = (0.210±
0.001, 0.376 ± 0.005, 0.526 ± 0.010, 0.655 ± 0.015), where we
have converted the luminosity distances to angular diameter
distances assuming DL(z) = DA(z)(1 + z)2. We note that
the inclusion of the supernovae systematics covariance ma-
trix (compared to uncorrelated errors excluding systematics)
increases the errors in these measurements of DA H0/c by a
factor of two. The supernovae data points and best-fitting
3rd-order polynomial model are displayed in Figure 4. This

Figure 4. This Figure displays the best-fitting 3rd-order polyno-
mial to the Union-2 compilation of supernovae data, normalized
as a plot of angular-diameter distance versus redshift.

Figure 5. This Figure displays our measurement of the evolution
of the cosmic expansion rate using Alcock-Paczynski and super-
novae data. The expansion rate is displayed using the value of
ȧ/ȧ0 = H(z)/[H0(1 + z)]; accelerating expansion implies a de-
crease in the value of this quantity with increasing redshift. The
black data points are obtained by combining Alcock-Paczynski
measurements of (1+z)DA(z)H(z)/c in four independent redshift
slices with supernovae distance determinations of DL(z)H0/c at
these redshifts, and are independent of curvature. The thicker,
blue data points result from applying the distance reconstruc-
tion method of Shafieloo et al. (2006) to both the supernovae and
Alcock-Paczynski data, producing optimal errors at both low and
high redshift but making the additional assumptions of zero spa-
tial curvature and that DA(z) may be expressed in terms of an
integral over 1/H(z). Predictions are plotted for three different
models: a fiducial ΛCDM model with Ωm = 0.27 (solid line),
an Einstein de-Sitter model with Ωm = 1 (dashed line), and a
“coasting” model where ȧ = constant (dotted line).

model provides a good fit to the data, with a chi-squared
statistic of 486.6 for 519 degrees of freedom.

Combining the Alcock-Paczynski and supernovae mea-
surements in the four redshift slices we find that
H(z)/[H0(1 + z)] ≡ ȧ/ȧ0 = (1.11 ± 0.17, 0.83 ± 0.13, 0.81 ±
0.08, 0.83 ± 0.10) where ȧ0 ≡ H0. These results are plot-

Blake et al. (2011)

(ASSUMES FLATNESS)

H0 DL(z) H(z)*DA(z)
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What methods & data are out there?

data type measures survey, z

z clustering (DA2/H(z))/rs3, H(z)*DA, DA/rs, H*rs
SDSS-II <0.5, SDSS-III <0.7, <3.5, WiggleZ<0.8, 

HetDex 1.9<z<3.5

other Alcock Paczynski: 
stacking voids, pair count orientation

H(z)*DA
SDSS-III<0.7

photometric clustering DA /rs SDSS-III<0.7, DES, Panstarrs

CMB DT/T rs∝1/!("M H02), DA(z*) WMAP, Planck etc z~1100

SNe low z: H0, high z: DL*H0 HST, Union 2 etc.

other low z: Cepheid Variables, 
Masers,  Tully-Fisher, Surface 

brightness fluctuations
H0

fgas (assumed constant in z) DL* ! DA XEUS

Active Galactic Nuclei ``reverberation” DL= (1+z)2DA

Radio galaxies accretion disks

futuristic: lensed CMB DA(z)/DA(z*)

futuristic: gravitational waves as 
standard sirens

DL

Eyal Kazin, Cosmic Flows in the Rain Forest February 20th 2012



Combinations

z-clustering at high z+ CMB -> DA2/H(z), DA(z), H(z)

z-clustering at low z + CMB -> H0 (Beutler et al. 2011)

z-clustering + S/N: H(z)/H0~å/å0 (Blake et al. 2011)

tests of DL(z)=(1+z)2 DA? Learn about dust, photon 
decay to axion?

H(z,R.A,Dec)? Back-reaction?

Eyal Kazin, Cosmic Flows in the Rain Forest February 20th 2012



Parameter Degeneracy 

Improving H(z) and DA(z) measurements 3227

Figure 2. Each panel displays the degeneracies between !=[w, "M0, "K] in the H − DA plane as a function of z. The axes are in units of a ‘true’ cosmology
!T = [−1, 0.25, 0]. The ‘false’ values are given in fractions in increments of #(frac) = 0.005. The legend reads such that: w < wT means w = wT ·f rac,
w > wT means w = wT /f rac, "M0 > "T

M0 means "M0 = "T
M0 · f rac, "M0 < "T

M0 means "M0 = "T
M0/f rac, "K > 0 means frac − 1 and "K < 0

means 1 − frac. In some high z panels we highlight 5, 10 per cent deviations in !. The thick boxes at low z indicate the geometric effects we test in this study.
The figure clearly shows that at (cosmologically) low redshifts there is a large degeneracy between the parameters. This is relaxed at higher redshifts where
distortions in "K and w affect mostly DA, and distortions in "M0 yield similar results to low z.

Fig. 2 shows how H and DA depend on cosmological parameters
for a number of redshifts. In each panel (each redshift) we hold
two of the three parameters "M0, "K and w (where "DE ≡ 1 −
"M0 − "K) fixed to a ‘true’ value and modify the third from its
fiducial according to the fraction indicated in the legend, between
1 and 1.5. We clearly see that at low redshifts H and DA yield
degenerate constraints on w, "K and "M, and that this degeneracy
can be broken as z increases. We notice that the dependence on "M0

does not vary much as a function of redshift, where both "K and w

align with the DA axis at high z, meaning H is not sensitive to these
parameters.

This plot demonstrates that the ("i, w) degeneracy can be broken
when applying the AP effect at high redshift (z > 2).

In this study we examine AP effects when varying w at mock
mean redshifts 〈z〉 = 0.33, and 0.44 as indicated by thick boxes in
bottom panels of Fig. 2. Fig. 2 demonstrates that our results are

similar to those we would have obtained by choosing to vary "K

or "M0.

3.3 One-dimensional projections of ξ (µ, s): introducing
clustering wedges

We define clustering wedges as

ξ (#µ, s) ≡
∫ µmax

µmin
ξ (µ′, s)dµ′

∫ µmax
µmin

dµ′ , (6)

where µ is the cosine of the angle between the separation vector s
and the line of sight. We assume here the plane-parallel, or small
angle, approximation, according to which two galaxies at the same
distance from the observer yield µ = 0 irrespective of their angular
distance. We note that the baryonic acoustic feature scale at z =
0.3 corresponds to ∼7◦ in the sky, and is smaller at larger redshifts
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