Peculiar velocities from the fundamental plane in SDSS

How far can we go?

Matt George
UC Berkeley / LBL

with David Schlegel and Uros Seljak
~80,000 early types at $z < 0.1$
with fundamental plane parameters

7600 deg.2 over northern Galactic cap

Well-calibrated photometry, spectroscopy

Measurement errors:
1% flux
4% size
11% velocity dispersion
How far can we go?

Per object:
- Signal: $v_{\text{pec}} \sim 200 \text{ km/s}$
- Noise: $\sigma_{\text{DI}} \sim 0.2cz \sim 6000 \text{ km/s (}z/0.1\text{)}$

$$N_{\text{obj}} \sim 80,000(z_{\text{max}}/0.1)^3$$
(SDSS Main sample starts to be incomplete at $z\sim0.08$)

$$S/N = v_{\text{pec}}/(\sigma_{\text{DI}}/\sqrt{N_{\text{obj}}})$$
$$\sim 9\sqrt{z_{\text{max}}/0.1}$$

If systematics can be controlled, there is power in large N
<table>
<thead>
<tr>
<th></th>
<th>Weak Lensing</th>
<th>Peculiar Velocities</th>
</tr>
</thead>
<tbody>
<tr>
<td>“observable”</td>
<td>γ</td>
<td>v_{los}</td>
</tr>
<tr>
<td>analyses</td>
<td>galaxy-galaxy lensing $<\gamma \delta_g>$</td>
<td>cross-correlation $<v \delta_g>$</td>
</tr>
<tr>
<td></td>
<td>cosmic shear $<\gamma \gamma>$</td>
<td>auto-correlation $<v v>$</td>
</tr>
<tr>
<td>S/N per object</td>
<td>$\sim 1/30$</td>
<td>$\sim 1/30 \times (0.1/z)$</td>
</tr>
<tr>
<td>dominant stat. uncertainty</td>
<td>shape noise ($\sim 30%$)</td>
<td>scatter in distance indicator ($\sim 20%$ for FP)</td>
</tr>
<tr>
<td>systematics</td>
<td>shear calibration, photo-zs, intrinsic alignments</td>
<td>FP fitting, Malmquist bias, velocity bias?</td>
</tr>
</tbody>
</table>
Fitting the Fundamental Plane

Must account for selection cuts and heteroskedasticity

Joint-normal distribution describes relationship between \(M, \log(R), \) and \(\log(\sigma_v) \)

10 parameter model: means, covariance matrix, and passive evolution in \(M \)

Maximize likelihood:

\[
P(x_i) = \frac{1}{(2\pi)^{N/2}|V + E_i|^{1/2}f_i} \exp\left[-\frac{1}{2}(\hat{x}_i^T(V + E_i)^{-1}\hat{x}_i)\right]
\]

\[
\mathcal{L} = \prod_i P(x_i)
\]

\(x_i = \{M, \log(R), \) and \(\log(\sigma_v)\}_i \)

\(V = \text{cov}[x] \)

\(E_i = \text{cov}[\sigma_{x_i}] \)

\(f_i = \text{renormalization for cuts} \)

Saglia 2001, Bernardi 2003
Mock Data

3-d Gaussian model is a good description of the data
Estimating Velocities from the Fundamental Plane

2-d example:
Assume shift is along y direction
Maximize $P(y|x)$
Estimating Velocities from the Fundamental Plane

2-d example:

Get covariance matrix
Estimating Velocities from the Fundamental Plane

2-d example:
Assume shift is along y direction
Estimating Velocities from the Fundamental Plane

2-d example:
Assume shift is along y direction
Maximize $P(y|x)$
Estimating Velocities from the Fundamental Plane

2-d example:
Assume shift is along y direction
Maximize $P(y|x)$
Estimating Velocities from the Fundamental Plane

Observables and FP covariance matrix
\[\mu \equiv \langle \{ M_r, \log(R_{deV}/\text{kpc}), \log(\sigma_v) \} \rangle \]
\[\mathbf{x} \equiv \{ M_r, \log(R_{deV}/\text{kpc}), \log(\sigma_v) \} - \mu \]
\[C_{FP} \equiv \text{cov}(\mathbf{x}) \]

The effect of velocities on FP observables
\[\mathbf{x}^s \approx \mathbf{x}^r + \eta \zeta \]
\[\eta \equiv \Delta \log D \quad \zeta \equiv \frac{d\mathbf{x}}{d \log D} \]

Maximum likelihood estimator for shifts
\[\frac{d}{d \eta} P(\mathbf{x}|\eta, C_{FP}) = 0 \]
\[\hat{\eta} = \mathbf{x}^s^T C_{FP}^{-1} \zeta \]
\[\sigma_{\hat{\eta}} = \zeta^T C_{FP}^{-1} \zeta \]
Status

First run of velocities, measuring velocity correlations

Issues to address:

velocity likelihood is lognormal
check residual FP correlations (z, Z, environment, age, etc.)
add priors to deal with Malmquist bias (P(v) is not flat)
other systematics?

Plans:

Joint measurement of $<\delta_g \delta_g>$, $<v \delta_g>$, $<vv>$
Luminosity bins \rightarrow bias dependence of velocities?
Velocities around interesting structures, e.g. Great Wall
Halo model density reconstruction
Compare local bulk flow with flows in independent volumes
Other prospects

Even larger data sets:
SDSS LRGs: N~110,000, z~0.35
BOSS: N~1.5 million, z~0.5
SDSS photometric FP: N~8.4 million, z~0.45, $\sigma_{\Delta I} \sim 35\%$
 (cf. Huff & Graves 1111.1070 magnification)

But...
 larger errors on observables
 evolution in scaling relations
 sparser sampling
 swamped by systematics?

Key issues:
 Limiting factors at higher z
 How best to complement redshift-space distortions