|
Quantum Atom Optics
The new interdisciplinary field of quantum-atom optics (QAO) has formed
at the intersection of atomic, molecular and optical physics, condensed
matter physics, and computational physics. The field is driven by
an unprecedented level of experimental control of degenerate Bose
and Fermi systems that have a well-defined theoretical basis in quantum
many-body theory. This leads to tests of theory that were previously
unavailable, and thus the development of fundamental knowledge.
In the theory core of the ARC Centre of Excellence for Quantum-Atom
Optics (ACQAO) we pursue cutting-edge developments in quantum many-body
physics that lead to our growing understanding of QAO systems. We
approach these systems from a microscopic perspective, focusing on
how to generate, manipulate and measure many-body correlations.
Our motivating scientific questions are:
- How are the many-body states of QAO systems best characterised, and
how is the formation of these states to be understood as a non-equilibrium,
dynamical process?
- What kinds of entanglement and many-body correlations can be generated
in QAO systems, and in what ways can they be efficiently detected?
- How do QAO systems test fundamental predictions of quantum mechanics
and many-body theory?
- What new theoretical and computational methods must be developed to
provide quantitative answers to these questions?
We provide ideas, simulations and advanced quantitative models for
leading experimental groups in Australia and worldwide. As an outcome
of ACQAO experimental and theoretical work, we expect practical tools
that utilize many-body quantum behaviour of QAO systems, e.g. continuously
pumped atom laser, sources of entangled atoms, and matter-wave interferometers
for precision measurements.
Our research program is structured around five themes:
1) Atom lasers and formation of quantum degenerate gases
2) Coherent manipulations of matter waves
3) Quantum statistics and pairing correlations in ultracold Bose
and Fermi systems
4) Macroscopic correlations, entanglement and fundamental tests
5) Computational physics and theoretical methods for Bose and Fermi
systems
Recent project reports
2010
- Exact Quantum Dynamics of Fermionic systems
M. Ögren, K. V. Kheruntsyan, and J. F. Corney
- Atom Interferometry below the standard quantum limit
S. A. Haine
- Interferometry and EPR Entanglement in a BEC
M. D. Reid, Q. -Y. He1, B. Opanchuk, S. Hoffmann, A. Sidorov, P. D. Drummond, C. Gross, and M. Oberthalers
- Relative number squeezing in condensate collisions
V. Krachmalnicoff, J.-C. Jaskula, M. Bonneau, G. B. Partridge, D. Boiron, A. Aspect, C. I. Westbrook, P. Deuar, P. Zin, M. Trippenbach, and K. V. Kheruntsyan
- Superfluidity in dilute gas Bose-Einstein condensates
C. Feng, T. M. Wright, T. Simula, A. S. Bradley, B. P. Anderson, and M. J. Davis
- C-field simulations of thermal Bose-Einstein condensates
G. M. Lee, T. M. Wright, S. A. Haine, M. C. Garrett, C. J. Foster, A. S. Bradley, N. P. Proukakis, and M. J. Davis
- Formation of topological defects in Bose-condensed gases
J. Sabbatini, G. M. Lee, M. C. Garrett, S. A. Haine, A. S. Bradley, B. P. Anderson, W. H. Zurek, and M. J. Davis
- BEC superpositions in twin wells
T. J. Haigh, A. J. Ferris, and M. K. Olsen
- Measurement of density fluctuations as a new probe of the physics of quasi-1D Bose gases
J. Armijo, T. Jacqmin, K. V. Kheruntsyan, and I. Bouchoule
- Momentum distribution of a weakly interacting quasi-1D Bose gas
P. B. Blakie, M. J. Davis, A. van Amerongen, N. J. van Druten, and K. V. Kheruntsyan
- Quadripartite CV entanglement and cluster states
S. L. W. Midgley, M. K. Olsen, A. S. Bradley, and O. Pfister
2009
- Exact Quantum Dynamics of Fermionic systems
M. Ögren, K. V. Kheruntsyan and J. F. Corney
- Superfluidity in dilute gas Bose-Einstein condensates
A. G. Sykes, C. Feng, D. C. Roberts, A. S. Bradley, B. P. Anderson, and M. J. Davis.
- Formation of topological defects in Bose-condensed gases
J. Sabbatini, G. M. Lee, S. A. Haine, A. S. Bradley, B. P. Anderson, and M. J. Davis
- Spontaneous Four-Wave Mixing of de Broglie Waves: Beyond Optics
V. Krachmalnicoff1, J.-C. Jaskula, M. Bonneau, G. B. Partridge, D. Boiron, C. I. Westbrook, P. Deuar, P. Zi ´n, M. Trippenbach, and K. V. Kheruntsyan
- Quantum dynamics and entanglement in Bose-Einstein condensates
M. K. Olsen, A. J. Ferris, C. M. Caves, S. W¨uster, B. J. Da¸browska-W¨uster, and M. J. Davis
- Nonlinear dynamics of Bose-Einstein condensates
S. A. Haine, C. J. Foster, E. D. van Ooijen, N. R. Heckenberg, H. Rubinsztein-Dunlop, P. van der Straaten, and M. J. Davis
- Extending the realms of numerical stochastic integration
M. K. Olsen
- Non-local spatial pair correlations in a 1D Bose gas
P. Deuar1, A. G. Sykes, D. M. Gangardt, M. J. Davis
- Quantum-atom optics with molecular dissociation
M. Ögren1, C. M. Savage, S. Midgley, M. J. Davis, M. K. Olsen, and K. V. Kheruntsyan
- C-field simulations of thermal Bose-Einstein condensates
G. M. Lee, S. A. Haine, M. C. Garrett, C. J. Foster, A. S. Bradley, R. N. Bisset, P. B. Blakie, C. Ticknor, T. Simula, and M. J. Davis
|