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Mach-Zehnder interferometer
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Entanglement enhances the phase measurement precision from the

standard quantum limit (or the shot noise limit) to the Heisenberg limit.
V. Giovannetti, S. Lloyd, and L. M accone, Science 306, 1330 (2004




Double-wdll interferometerswith BECs
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Double-well interferometer via combination of magnetic film
and bias field, (Hannaford, Sidorov, ACQAO @ SUT)

B.V. Hall et al., Phys. Rev. L ett. 98, 030402 (2007)




Classical Bose-Josephson junction

Two - mode approximation to the Gross - Pitaevskil equation
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Two types of measur ement

NUMBER:
large initial separation & short TOF

(clouds distinct)
image to count N

PHASE:
small initial separation & long TOF

(clouds interfere)
image to measure phase n

n(x) ~ 14 acos(kx + @)
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Nonlinear Kerr effectsin condensates

* |Inter-atom scattering — s\wave scattering
- attractive interaction, bright solitons
- repulsive interaction, dark/grey solitons
* Nonlinear effectsin classical Bose-Josephson junctions
- macroscopic quantum self-trapping (MQST) and bistability
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Many-body effectsin systems of ultracold atoms

Ultracold Bose atomsin optical lattices — Bose-Hubbard model
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Jacksch, Zoller, et al., Phys. Rev. Lett. 81, 3108 (1998)




Quantum phasetransition

kinetic energy term dominates:
Weakly interacting bosonic gas

-> Superfluidity

# Atoms are delocalized
over the entire |attice
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® Coherence,
manybody state can be described
by a macroscopic wavefunction

{aj);tﬂ

* Coherent state

Superposition with a Binomial atom

number distribution per lattice site
-> number fluctuations

» Gapless excitation spectrum

interaction energy term dominates:
Strongly corrolated bosonic system
-> Mott insulator

= Atoms are completely localized
to lattice sites

¥u)=T1@ Y 0

®* No coherence, no
macroscopic wavefunction

(a)=0

* Fock state
with a vanishing number
fluctuation per lattice site

# Excitation spectrum has an
energygapA=U

Momentum
distribution

Bloch, Mainz




Quantized Bose-Josephson junction
Quantized Hamiltonian for two linearly coupled Bose modes

d T, . . E
H :E(nz- n) - E(aza1+a1a2)+?c(nz_ n,)’

[E./T|>>1
E.>0

Regime

State form W
(N/2)!

Coherent matrix Nad 05

ChEY 2% 15

Fluctuations




Enerqgy spectrum for a symmetric QBJJ of negative charging energy
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The ground state degeneracy breaks down near the Hopf
bifurcation point in the classical Bose-Josephson junction.

C.Leeetal., Phys. Rev. A 69, 033611 (2004) (classical bifurcation)
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Mach-Zehnder interferometer on a QBJJ

Beam splitting and recombination via dynamical bifurcation
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For a symmetric QBJJ with negative charging energy E_, its ground
state |0> is transformed into the equal-probability superposition of
the degenerated ground state |0> and the first excited state |1>,
which is a path-entangled state (|N/2,-N/2>+|N/2,+N/2>)/C2, when it
adiabatically evolves through the bifurcation point from an SU(2)
coherent state for the strong tunneling limit.

Thus, we can use |0> and |1> as two paths of a MZ interferometer.




| nter fer ence via adiabatic recombination
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After inducing an unknown phase difference between two paths with a
mode-dependent force, the two paths are recombined by adiabatically
transforming from the weak coupling limit to the strong coupling limit.

The final populations in |0> and |1> show Mach-Zehnder interference
behavior determined by the phase shift.




Detection via counting the number of atomsin an asymmetric QBJJ
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It is not easy to distinguish |O> and |1> after recombination (the
strong coupling limit). However, it is easy to distinguish and detect
IN/2,-N/2> and |[N/2,+N/2> via atom number counting. Thus we
introduce a proper asymmetry after recombination, and then
adiabatically decrease the coupling to the weak coupling limit of
|0>=|N/2,-N/2> and |1>=|N/2,+N/2>. Due to the absence of energy
crossing, the populations in |O> and |1> are unchanged.




Summary and discussions
Summary

- negative charging energy ® Feshbach resonance
- coupling® tunnelling(double- well system), or
Raman transition (two - component condensate)
- two paths ® two degenerated ground statesfor negative charging energy
- beam splitting/ recombination ® dynamical bifurcation
- pathentangled state ® dynamical bifurcation

Discussions

» largetotal number of particle (in order of 103, 10 for systems of
photons and trapped ions)

 reduced influence of environment (adiabatic evolution and closed sub-
Hilbert space)

* measurement precision of Heisenberg limit (path entangled states)

o experimental possibility (double-well or two-component systems)

C. Lee, Phys. Rev. Lett. 97, 150402 (2006).




Our worksrelated to quantum interference and fluctuations

|n_processing:
e Phase senditive excitations
e Quantum and thermal fluctuations

Published:
Helsenberg limited MZ interference [Lee, PRL 97, 150402 (2006)]

Discrete vortices melting via quantum fluctuations [L ee, Alexander,
Kivshar, PRL 97, 180408 (2006)]

Bistability and bifurcation [Lee et a., PRA 69, 033611 (2004)]

Quasispin modd for macroscopic quantum tunneling [Lee et al., PRA
68, 053614 (2003)]

AC Josephson effects[Lee et d., PRE 66, 026202 (2002); PRA 64,
053604 (2001)]

Coupled-mode theory [Ostrovskaya, Kivshar, et a., PRA 61, 031601
(2000)]
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