

Understanding Collisions of Cold Polar Molecules

Christopher Ticknor

ARC Centre of Excellence for Quantum-Atom Optics, Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne

Ultracold Molecules are Almost Here

- Novel many body systems of polar molecules predicted, also Bose-Hubbard physics.
- The DeMille group has produced RbCs in its absolute vibrational ground state @ $T \sim 100 \, \mu K!!!$ Collisions within a year?

Current work in progress

- 2 Body scattering of absolute ground state polar molecules with singlet sigma: current example RbK-RbK (theories and methods will apply for RbCs and LiH).
- Study Energy and Electric field dependence of long range scattering.
- Absolute ground state is a Strong field seeker and there are no 2-body inelastic processes.
- **Aim**: be first to do FULL 2-body scattering of ultracold POLAR molecules.

Dipolar Interactions

$$H_{\mu\mu} = \frac{\mu_1 \cdot \mu_2 - 3\hat{R} \cdot \mu_1 \hat{R} \cdot \mu_2}{R^3}$$

$$H_{\mu\mu} \approx \frac{1 - 3\cos^2\theta}{R^3} \langle \mu \rangle^2$$

- Anisotropic!
- Long Range!
- Requires a non-zero field for degenerate channels to be dipole coupled.
- Result: Larger Number of partial waves required AND Many Total Ms required to calculate.

<µ>

$$\boldsymbol{M} = \boldsymbol{M}_1 + \boldsymbol{M}_2 + \boldsymbol{M}_L$$

Approximations for dipolar Scattering

$$\sigma_{partial}^{Born} \propto const$$

$$\sigma^{SC}_{_{Total}} \propto rac{\left\langle \mu
ight
angle^2}{\sqrt{E_{coll}}}$$

$$\sigma^{ extit{Quantum}}_{ extit{partial}} \propto rac{1}{E_{ extit{coll}}}$$

- Born Approximation gives partial cross section, Independent of Energy.
- At high energy: Semi-Classical Approximation gives a **total** cross section in terms of physical parameters
- At low energy: Quantum mechanical scattering;
 Depends on phase shift of a single term. Unitarity limit.

Energy Dependence

Terms in the cross sections:

Many total Ms and many partial waves

Electric Field dependence of total cross section

Critical Electric Field: Semi-classical equals Unitarity Limit

Transition in behavior of Cross section

Conclusions

- Polar molecule scattering has dramatic energy dependence in an electric field.
- Transition between quantum and semi-classical scattering can occur at very low energies.
- Interesting implications for many body systems.
- Funding from ACQAO; Computing at VPAC.

Critical Electric Field: Semi-classical equals Unitarity Limit

Transition from semi-classical scaling and Quantum Mechanical scattering depends on Electric Field

$$\sigma^{SC}_{_{Total}} = \sigma^{Quantum}_{_{partial}}$$

$$x \approx \sqrt{\frac{1.494}{\sqrt{m_r^3 \mu^4 E_{coll}} - 0.223}}$$

$$E_Q \approx \frac{0.045}{m_r^3 \mu^4}$$

- Find Electric Field at which SC equals the Quantum scattering.
- Above this field the scattering will Semi-classical and depends on the molecular parameters; no single phase parameterizes scattering.
- Low energy and near zero field scattering will always be dominated by Quantum scattering or **phase dependent**.

Molecular Structure and Stark Effect for Singlet Sigma

Little bit of scattering

$$M = M_1 + M_2 + M_L$$

$$\sigma = \sum_{M} \sigma^{(M)}$$

$$\sigma^{(M)} = \sum_{ij} \sigma_{ij}^{(M)}$$

$$\sigma_{ij}^{(M)} = \frac{2\pi}{L^2} |T_{ij}^{(M)}|^2$$