


Abstract

For calculating the ground state of an ultra-cold Fermi gas, the collisional inter-

action potential V(r, r′) can be described using a contact potential approxima-

tion (e.g., [3]) while also invoking a momentum, cutoff to correct the ultra-violet

divergence. The correctly renormalized theory is cutoff independent [3] and is

equivalent to other standard renormalization procedures (e.g., [2]) in limit that

the energy cutoff is infinite.

In the dynamic system where a Bragg grating is applied, the Bragg scattering

[1] is sensitive (albeit weakly) to the chosen energy cutoff. In the limit that the

cutoff becomes infinite, no Bragg scattering occurs in the renormalized theory.

Renormalization is, however, only a tool. The non-renormalizability of this prob-

lem arises because Bragg scattering measures the momentum behaviour of the

pair function, which is ill defined in a renormalized theory.

By using a more accurate description of the collisional interaction potential—

a separable potential approximation—we are able to give a relatively simple

description of the expected behaviour of the Bragg scattering.
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1 Two-Component Fermi Gas: Hamiltonian

System Hamiltonian

H =
∑

α

∫
ψ†α(r, t)H0ψα(r, t)d

3r +Hscatt

Single Particle Hamiltonian (no Trap):

H0 = − ~2∇2

2M
+ Vopt(r, t)

Spin-preserving optical Bragg grating:

Vopt(r, t) = 1

2
A cos(q · r−ωt), q parallel to x-axis

Scattering Hamiltonian—most general translationally invariant form

Hscatt = 1

2

∑

α

∫
V(r, r′)ψ†α

(
R + r′

2
, t

)
ψ†−α

(
R − r′

2
, t

)
ψ−α

(
R − r

2
, t

)
ψα

(
R + r

2
, t

)
d3r d3r ′ d3R,
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2 Effective Potentials

Only low energy features are important.

Contact Potentials

• Fermi: V(r, r′) = Vδ(r − r′)

Requires a momentum cutoff and renormalization.

• Huang-Yang, Bruun-Castin-Dum-Burnett: V(r, r′) = Vδ(r − r′)∂RR, (R ≡ |r− r′|)
Equivalent to a renormalized Fermi contact potential.
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• We find Bragg scattering is not renormalizable!

– Two kinds of Bragg scattering

1. Single particle Bragg scattering

2. Cooper pair scattering—new effect

• Amount of Cooper pair scattering sensitive to higher energy behaviour of the potential.

=⇒ Depends (weakly) on the the renormalization cutoff.

As cutoff →∞
Cooper pair Bragg scattering → 0

=⇒ Require a more accurate description than a contact potential.
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Separable potential (Yamaguchi, Köhler-Szymańska)

Approximate collisional interaction potential:

V(r, r′) = gF(r)F∗(r′),

• F(r) has a finite range ∼ σ with
∫
F(r)d3r = 1.

• Fourier transform: f(k) =
∫
F(r)e−ik·rd3r

• Momentum space potential: V (k,k′) = gf(k)f∗(−k′)

• Strength parameter: g = T2B(0)

1−αT2B(0)
, where α = M

(2π)3~2

∫ |f(k)|2d3k

k2

• Validity: Normally within a limited energy range around E ≈ 0
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Parametrization of the Separable Potential

• Gaussian (Köhler-Szymańska):

f(k) = exp
(
−k2σ 2

G/2
)

with σG = 57.383aBohr

• Step Function (our choice):

f(k) = Θ (kc − |k|) with kc =
√
π/2σG = 31.1kF

0.05
0

1

k

f(k)

Behaviour of solutions for large kc

• Strength parameter g now given by

g = T2B(0)

1−αT2B(0)
, where α =

kc M

(2π2)~2

• T2B(0) fixed and negative =⇒ g → 0 as kc →∞

7



3 Mean-Field Approximation—Bogoliubov de Gennes Equations

Dominant collisional interaction described using mean-field pairings

W̄α(r, r
′, t) = 〈ψ̂†α(r, t)ψ̂α(r′, t)〉, ∆̄(r, r′, t) = 〈ψ̂α(r, t)ψ̂−α(r′, t)〉.

Heisenberg equations of motion take the form

i~
∂ψ̂↑,↓(r, t)

∂t
= [H0 − µ]ψ̂↑,↓(r, t)+

∫
W↓,↑(r, r′, t)ψ̂↑,↓(r′, t)d3r ′ ±

∫
∆(r, r′, t)ψ̂†↓,↑(r′, t)d3r ′,

where

Wα(r, r
′, t) =

∫
V

(
r′ − r+ s

2
, r− r′ + s

2

)
W̄α

(
r′ − s

2
, r− s

2
, t

)
d3s,

and

∆(r, r′, t) =
∫
V(s, r− r′) ∆̄↓

(
r′ + r− s

2
,
r′ + r+ s

2
, t

)
d3s.
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Quasi-homogeneous approximation

• BCS correlation length ≫ range of the collisional potential.

• Equal population densities of two states,

• Hartree field U(r) ≡ g〈ψ†↑↓(r)ψ↑↓(r)〉

• Pair function ∆(r) ≡ g〈ψ↑(r)ψ↓(r)〉

• Using separable form, mean-fields become

Wα(r, r
′, t) ≈ U(r, t)

∫
F

(
r′ − r+ s

2

)
F∗
(

r− r′ + s

2

)
d3s

∆α(r, r′, t) ≈ ∆(r, t) F∗(r− r′)
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Bogoliubov Quasiparticle Representation

ψ↑(r, t) =
∑

k

[
uk(r, t)γk↑ − v∗k (r, t)γ†k↓

]

ψ↓(r, t) =
∑

k

[
uk(r, t)γk↓ + v∗k (r, t)γ†k↑

] Time-independent quasi-particle Fermion

annihilation operators γkα

〈γ†kαγk′β〉 = δkk′δαβ n̄k

〈γkαγk′β〉 = 0

Fermi-function: n̄k = 1
exp(ǫk/kBT)+ 1
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Time-dependent Bogoliubov de Gennes equations

• General form:

i~
∂uk(r, t)

∂t
= [H0 − µ]uk(r, t)+

∫
W(r, r′, t)uk(r

′, t)d3r ′ +
∫
∆(r, r′, t)vk(r

′, t)d3r ′

i~
∂vk(r, t)

∂t
= − [H0 − µ]vk(r, t) −

∫
W(r, r′, t)vk(r

′, t)d3r ′ +
∫
∆∗(r, r′, t)uk(r

′, t)d3r ′

• Use appropriate separable potential forms for W, ∆ collisional interaction potential

• Reproduce the usual ground state BCS equations.
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Relation to Standard BCS Theory

Spatially homogeneous:

U(r, t) → U, ∆(r, t) → ∆,

uk(r) → ak
0e
ik·r, vk(r) → bk

0e
ik·r, |ak

0|2 + |bk
0 |2 =

1

L3

Time-independent BCS equations:

ǫk a
k
0 =

(
Ek − µ +U

∣∣f (k/2)
∣∣2

)
ak

0 +∆ f∗(k) bk
0

ǫk b
k
0 = −

(
Ek − µ +U

∣∣f (k/2)
∣∣2

)
bk

0 +∆∗ f(k) ak
0
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Solutions

Standard solution: f(k) = Θ(kc − |k|)

Ek = ~2k2

2M
εk =

√
(Ek − µ +U)2 + |∆|2

U = g
∑

k

[
|ak

0|2n̄k + |bk
0 |2(1− n̄k)

]
ak

0 = ηk∆

∆ = −g
∑

k

ak
0b

k∗
0 (1− 2n̄k) bk

0 = ηk (εk − Ek + µ −U)

Renormalizable Solutions

• For a given cutoff kc , choose the strength g to give the correct scattering length.

• Same long wavelength physics independent of the cutoff.

• But as kc → ∞, g → 0, and thus U,∆ → 0!

BCS physics then expressed in terms of renormalized quantities

∆̃ = T2B(0)∆/g, Ũ = T2B(0)U/g

• Inclusion of optical Bragg potential Vopt(r) =⇒ cutoff dependence
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IS IT LEGAL TO HAVE A CUTOFF DEPENDENCE?
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What Does Renormalization Do?

k

kc

|ak|2

 or |bk|2

• Reduces ak, bk, while increasing the cutoff so that overall sums are preserved.

• Suppresses possibly interesting finite k behaviour in favour of indeterminate high k behaviour
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Cutoff Dependence in the BCS Theory of Superconductivity

• Interaction between electrons mediated by crystal lattice

• Natural cutoff kDebye given by Debye frequency

• Debye frequency depends on masses of crystal atoms

• Leads to the isotope effect—critical temperature

depends on the isotope of the superconducting metal.

• Experimentally well-verified effect

• Historically was evidence that the crystal lattice was

involved in superconductivity

• Renormalization would destroy the isotope effect
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4 Bragg Scattering Equations

Bloch form

uk(r, t) = eik·r
∑

n

ak
n(t)e

in(q·r−ωt),

vk(r, t) = eik·r
∑

n

bk
n(t)e

in(q·r−ωt),

U(r, t) =
∑

n

Un(t)e
in(q·r−ωt),

∆(r, t) =
∑

n

∆n(t)ein(q·r−ωt),

Initial condition: amplitudes uk(r, t) and vk(r, t) are the BCS stationary states.
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Evolution equations

i~
∂ak

n(t)

∂t
= ~ωan(k)a

k
n(t) +

1

4
A
[
ak
n−1(t) + ak

n+1(t)
]

+
∑

p

{
Un−p(t)|f

(
1

2
(k+ pq)

)
|2ak

p(t)+∆n−p(t)f∗(k+ pq)bk
p(t)

}

i~
∂bk

n(t)

∂t
= ~ωbn(k)b

k
n(t)−

1

4
A
[
bk
n−1(t) + bk

n+1(t)
]

−
∑

p

{
Un−p(t)|f

(
1

2
(k+ pq)

)
|2bk

p(t) +∆∗p−n(t)f(k + pq)ak
p(t)

}

where

~ωbn(k) = −Ek+nq + µ −n~ω, ~ωan(k) = Ek+nq − µ −n~ω
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5 Numerical Results

• Two-component gas

• Material 40K in the (F = 9/2,mF = −9/2) and (F = 9/2,mF = −7/2) Zeeman states

• Cutoff kc ∼ 31.1kF.

• Scattering from initial pair correlations easily distinguished from the scattering in a non-interacting

gas.

High momentum transfer

• |q| = 4.33kF =⇒ q/2 well outside Fermi surface.

• 4 Bragg orders during the evolution

Only n = 0,±1,−2, for ak
n and bk

n
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Intial State—BCS Paired Fermi Gas
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Bragg Scattering from Fermi Gas in BCS Regime
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Interpretation—Correlated-pair Bragg scattering

• Possible in a Cooper paired Fermi gas because of the initial pair correlations.

• Characterized by

– Spherical shell of correlated atoms in momentum space centred at momentum ~q/2

– On the red-detuned side of the single-particle Bragg resonance

– Slight asymmetry in the Bragg spectra.

• Spherical shell not a direct result of single-particle Bragg scattering events

• Two stage process

1. Generation of the pair potential grating via single-particle Bragg scattering

2. Scattering of Cooper pairs via the Bragg grating in the pair potential.
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Quantitative Model

ky

kx
q/2

Fermi surface

• Momentum and energy conservation

• Zero COM Cooper pair—initial momenta ±~kP.

• Mainly reside on the Fermi surface =⇒ |kP| ∼ k′F.

• Cooper pair scattered by the pair potential grating to

total COM momentum ~q

• Excess energy distributed equally between the atoms of

the pair—final momenta ~(q/2± krel).

• Energy required ~ωpair = ~2

M

(
q2

4
+ k2

rel − k′2F
)

• Frequency threshold, ωthres = ~

M

(
q2

4
− k′2F

)
,

• Below threshold frequency the pair potential grating does not have sufficient energy to scatter Cooper

pairs

• Above the threshold scattered pairs form a spherical shell

Momentum radius krel ≈
√
M

~
(ω−ωthres)—Agrees well with detailed numerics.
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