


Abstract

For calculating the ground state of an ultra-cold Fermi gas, the collisional inter-
action potential V(r,r’) can be described using a contact potential approxima-
tion (e.g., [3]) while also invoking a momentum, cutoff to correct the ultra-violet
divergence. The correctly renormalized theory is cutoff independent [3] and is
equivalent to other standard renormalization procedures (e.g., [2]) in limit that
the energy cutoff is infinite.

In the dynamic system where a Bragg grating is applied, the Bragg scattering
[1]is sensitive (albeit weakly) to the chosen energy cutoff. In the limit that the
cutoff becomes infinite, no Bragg scattering occurs in the renormalized theory.
Renormalization is, however, only a tool. The non-renormalizability of this prob-
lem arises because Bragg scattering measures the momentum behaviour of the
pair function, which is ill defined in a renormalized theory.

By using a more accurate description of the collisional interaction potential—
a separable potential approximation—we are able to give a relatively simple
description of the expected behaviour of the Bragg scattering.
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1 Two-Component Fermi Gas: Hamiltonian
System Hamiltonian

Z J L/JL(I‘, t):i’{otlla(l“, t)d37’ + Hscart

Single Particle Hamiltonian (no Trap):

h*V?

= M

+ Vopt (I' t)

Spin-preserving optical Bragg grating:

Vopt (I, t) = %A cos(q-r— wt), q parallel to x-axis

Scattering Hamiltonian—most general translationally invariant form

A —ZJV(rr)qﬁ <R+ )qﬂ (R—%,t)w_a<R—§,t>qja<R+

r
=t
2!

) v d3v' d°R



2 Effective Potentials

Only low energy features are important.

Contact Potentials
e Fermi: V(r,¥') =Voé(-1r)
Requires a momentum cutoff and renormalization.

e Huang-Yang, Bruun-Castin-Dum-Burnett: V(r,r') = Vo(r — r')0gR, (R=r—-r'))

Equivalent to a renormalized Fermi contact potential.



o We find Bragg scattering is not renormalizable!

- Two kinds of Bragg scattering

1. Single particle Bragg scattering
2. Cooper pair scattering—new effect

e Amount of Cooper pair scattering sensitive to higher energy behaviour of the potential.
= Depends (weakly) on the the renormalization cutoff.
As cutoff — o

Cooper pair Bragg scattering — 0

= Require a more accurate description than a contact potential.



Separable potential (Yamaguchi, Kohler-Szymanska)

Approximate collisional interaction potential:

V(r,r') = gF(r)F*(r'),

F(r) has a finite range ~ o with [ F(r)d3r = 1.

Fourier transform:  f(K) = [ F(r)e &rd3y

Momentum space potential: VKk,K) =gf(K)f*(-K)

T>5(0) M | f(K)|2d3k
I aTy0) Where &= s k2

Strength parameter: g

Validity: Normally within a limited energy range around E = 0



Parametrization of the Separable Potential

e Gaussian (Kohler-Szymanska):
f&) =exp (-K20¢/2) with 06 = 57.383ap0n

e Step Function (our choice):
f(K) =0 (k. —|Kk|]) with k.= .m/20¢ =31.1kp

Behaviour of solutions for large k.

e Strength parameter g now given by

T>5(0) M
S 5 h _ Eem
g 1— aTop(0)’ WNEre &= 1ore)p2

e T»5(0) fixed and negative — g — 0 as k. — o



3 Mean-Field Approximation—Bogoliubov de Gennes Equations

Dominant collisional interaction described using mean-field pairings

= (L O, D), B - 0.0, 0).

Heisenberg equations of motion take the form

iha(i/m(l‘,t)

y [Ho — u] o, t) + me(l‘, v, 6, ) dr + jA(r, v, 09!, 0d’r,

where

Wy, ', t) = JV (r’ —r+ %,r—r’

and

Ar, Y, t) = JV(s,r—r’) A, (H%¥



Quasi-homogeneous approximation

e BCS correlation length > range of the collisional potential.

Equal population densities of two states,

Hartree field = gyl MY @)
Pair function = g(y )y, (r))

Using separable form, mean-fields become

J (r—r+ )F (r—r +§>d3s

A(r, t) TG

Q

Wu(r, 1, t)

Ax(r, 1, t)

Q



Bogoliubov Quasiparticle Representation

Wi (r,t) = > [uk(r, DY — v (T, t)yﬂl]

K Time-independent quasi-particle Fermion
Wi, t) = [uk(r, Dy + vi (1, t)ylg] annihilation operators ykq
Kk
(ViaYip) = Ouiedup ik .
Fermi-function: Mk

~ exp(ex/ksT) + 1
(YkaYwp) = 0



Time-dependent Bogoliubov de Gennes equations

e General form:

ma”‘gﬁ = B - w0 + [ WY, D@, 0@ + [ A, D, D
ihavka(itr’t) = —[Hy— pulvk(r,t) — JW(r, v, v, t)d3r + JA*(r, v, Oue (', t)d3r’

e Use appropriate separable potential forms for W, A collisional interaction potential

e Reproduce the usual ground state BCS equations.



Relation to Standard BCS Theory

Spatially homogeneous:

U(r,t) - U, A(r, t) — A,
uk(r) — afe™r, vk (r) — bfe™® T, la¥|? + |bE|? =

Time-independent BCS equations:

exal = <Ek—u+U>al(§+Abl(§

exb¥ = —(Ek—u+U \f(k/2)|2 /() B

1

L3



Solutions

Standard solution: f (k) = O (k. — |Kk|)

h2k2
Ey = &1 =\ (Ex -+ U)% + |A]2
U= gz[mo K+ D121 - ) | ag = ma
Az—gZalgblg*(l—Zﬂk) b¥ = nk (ex — Ex + u — U)

Renormalizable Solutions
e For a given cutoff k., choose the strength g to give the correct scattering length.

e Same long wavelength physics independent of the cutoff.

e Butas k, — o, g — 0, and thus U,A — 0!
BCS physics then expressed in terms of renormalized quantities
A =Tp(0)A/g, U =Tw(0)U/g

e Inclusion of optical Bragg potential V,, (r) = cutoff dependence



IS IT LEGAL TO HAVE A CUTOFF DEPENDENCE?



What Does Renormalization Do?

e Reduces ay, by, while increasing the cutoff so that overall sums are preserved.

e Suppresses possibly interesting finite k behaviour in favour of indeterminate high k behaviour




Cutoff Dependence in the BCS Theory of Superconductivity

e Interaction between electrons mediated by crystal lattice
o Natural cutoff kpepye given by Debye frequency
e Debye frequency depends on masses of crystal atoms

e Leads to the isotope effect—critical temperature
depends on the isotope of the superconducting metal.

e Experimentally well-verified effect
205 2.06 207 2.08

lgM—»

e Historically was evidence that the crystal lattice was
involved in SuperconductiVity Fig. 10.15. Isotope effect for tin

(Sn). The results of several

authors are summarized [10.10]:

. . H Maxwell (0); Lock, Pippard,

e Renormalization would destroy the isotope effect Shoenberg (I); Sorin, Reyolds
and Lohman (A)




4 Bragg Scattering Equations

Bloch form
ur(r, t) = ekr Z ak (t)en@r-wo,
n
vx(r, t) = g Z b%(t)ein(q-r*wt)’
n
U(r’ t) — Z Un(t)ein(q-rfwt)’
n
A(r,t) =

Z An(t)ein(q-rfwt)’
n

Initial condition: amplitudes ux(r,t) and vi(r, t) are the BCS stationary states.



Evolution equations

dak (t)

ih
Yot

obX (1)

ih
Y

where

hw (K)aX (t) + %A [alfl,l(t) + alflﬂ(t)]

+> {Un,,(t)lf (3K +pa)) Pak(t) + An_p(t) f* (K + vq)b‘;(t)}
14

hwb (K)DE (t) - %A ERGEY 0]

-3 {Un,,<t>|f (Lk+ pa)) 12BE(E) + A%, (0) F (K + vq)a‘,‘,(t)}
14

howb (K) = —Fxing+ M — nhow, hew?(K) = Exinq — M — Nhw



5 Numerical Results

Two-component gas

Material 4°K in the (F = 9/2, mr = —9/2) and (F = 9/2, mr = —7/2) Zeeman states

Cutoff k. ~ 31.1kg.

Scattering from initial pair correlations easily distinguished from the scattering in a non-interacting
gas.

High momentum transfer

e |q| =4.33kr = q/2 well outside Fermi surface.

e 4 Bragg orders during the evolution

Only n =0, +1, -2, for aX and bX



Intial State—BCS Paired Fermi Gas

Column Density  |Go(k)|
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Bragg Scattering from Fermi Gas in BCS Regime

Column Density

w = 9.2wp (a) |
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w = 10.8wp (b) |
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Interpretation—Correlated-pair Bragg scattering

Possible in a Cooper paired Fermi gas because of the initial pair correlations.

Characterized by

- Spherical shell of correlated atoms in momentum space centred at momentum fq/2
- On the red-detuned side of the single-particle Bragg resonance

- Slight asymmetry in the Bragg spectra.

Spherical shell not a direct result of single-particle Bragg scattering events

Two stage process

1. Generation of the pair potential grating via single-particle Bragg scattering

2. Scattering of Cooper pairs via the Bragg grating in the pair potential.



Quantitative Model
e Momentum and energy conservation
e Zero COM Cooper pair—initial momenta +hkp.
e Mainly reside on the Fermi surface = |Kkp| ~ k;.

e Cooper pair scattered by the pair potential grating to
total COM momentum hq

e Excess energy distributed equally between the atoms of
the pair—final momenta h(q/2 + Kyel).

hZ q2 ) )
o Energy required Awpair = i (— e k{f)
e Frequency threshold, w _h(a_ k2
q Yy ’ thres — M 4 F y

e Below threshold frequency the pair potential grating does not have sufficient energy to scatter Cooper
pairs

e Above the threshold scattered pairs form a spherical shell

. M . . .
Momentum radius kye =~ \/E (W — wnres)—Agrees well with detailed numerics.



