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The phase transition in the Dicke model for superradiance obtained by Hepp and Lieb and Wang and Hioe is

modified by eliminating the rotating wave approximation.

The problem of NV two level atoms interacting with
a radiation field has been the subject of considerable
research. The starting point for many investigators has
been the Dicke [1] model which considers the interac-
tion of N two level atoms with a single mode of the
radiation field in a cavity of volume V. A variety of
solutions to this problem may be found in the litera-
ture [2]. Recently an interesting result on this system
has been found by Hepp and Lieb [3], who show that
in the thermodynamic limit of N—ee, V=20 and for a
sufficiently large value of the coupling constant be-
tween the atom and field, the system exhibits a second-
order phase transition from normal to superradiance at
a certain critical temperature. The same result was later
obtained in a less rigorous but more transparent manner
by Wang and Hioe (W.H.) [4]. Both the analyses men-

and X' is the coupling between the atoms and the field;
a, at are the boson annihilation and creation operators
for the field modes and 0}-'", ojand of are the pseudo
spin operators for the jth atom. In the full interaction
Hamiltonian we consider u=1. The interaction Hamil-
tonian in the R.W.A. is obtained from eq. (3) by set-
ting u=0.

The thermodynamic properties of the above model
may be calculated from the canonical partition func-
tion Z(N, T') defined by

Z(N,T)=Trexp(—BH); B=1/kT. )

Following W.H. we use the coherent states |a) [6] as
a basis to evaluate the trace over the field variables.
This yields

rde
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Driving a Quantum System with the Output Field From Another
Driven Quantum System

C. W. Gardiner
Joint Institute for Laboratory Astrophysics, University of Colorado, Boulder, Colorado 80309-0440
and Physics Department, University of Waikato, Hamilton, New Zealand
(Received 22 December 1992)

Quantum Langevin equations and a master equation are derived for a two-atom system in which

the first atom is driven by coherent field, and the fluorescent light used to drive a second atom. We
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Quantum Trajectory Theory for Cascaded Open Systems

H. J. Carmichael

Department of Physics, Chemical Physics Institute, and Institute of Theoretical Science,
University of Oregon, Eugene, Oregon 97403
(Reccived 28 December 1992)

The quantum trajectory theory of an open quantum system driven by a photoemissive source is formu-
lated. The formalism is illustrated by applying it to photon scattering from an atom driven by strongly

focused coherent light. Quantum Trajectory Theory for Cascaded Open

Systems, H. J. C 4]{’\"(,['”\[-] University of Oregon The the-
ory of open systems is used in quanlum optica in two distinct ways:
PACS numbers: 42.50.Lc, 03.65.Bz, 32.80.—t to model sources of light such as lasers and parametric oscillators,

and to descr he response of irradiated cavities and atoms. Some
times the two applications are used in combination; first, statistical
properties of the field radiated by a source are caleulated, and these
are then used in a separate calculation to |I<:Ilcrrmm- th:rmsponsc
% 2 s T . . of a system that is irradiated by the source. But the usefulness of
Research on the generation of nonclassical light has parts. My description is made in ter this nm.k.,,}n i quite limied, T i cse "‘l':‘”‘tl""'t;'ﬂij“;’ i
. . . - . sources and certain broadband sources such as broadband squeezed
been carried out with considerable success for several wave function for the composite syster or chastic light. There exists no general theory for cascaded open
. . . systems that gives the f system B to radiation
years. There has been little work, however, on using non- the broken time symmetry I allow the stem A when there exists an open-aystems treatrment
. “ : . . E ely. In T Jop such a theory using
classical light to excite a second quantum system. Most A and B to be mediated by a reser\ (i Falactory focomilation of onet seatou: The saared

- i < ? i . . - T stel E stochastic wave-
experiments are concerned either with directly measuring Born-Markoff approximation. Figure function. G s wireafonclio ibes 2 paled stae

. I . . . the A and & subsys In the qua to
the _nonclassical characteristics of a_source or using these ple version of the source and driven § the wavefunciion vadergoes & cohorent m trajectory nad By k
- nonunitary Schrodinger equation, interrrupted at o lom times by
wavefunction collapses. 1 derive the nomunitary Schradinger equa-
tion and the form of the collapses. I illustrate the theory with some
simple examples and discuss potential applications to problems in-
volving the interaction of atoms with nonclassical light.
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FIG. 2. Input-output channels for an atom driven by
coherent light.

all rates are dimensionless numbers; 2I"+ 2" =2 is the to-
tal spontaneous emission rateand 0 =T = 1.
For this example the non-Hermitian Hamiltonian is

#=in[VRK/2(a!

—64+6-—

—a)—Ka'a
V2KTaé (11)

where the first term on the righl-hand side represents a
classical current driving the laser mode; 6+ and 6 - raise
and lower the atom between states | —) (lower) and |+)
(upper). There are now two kinds of collapses occur-
ring at rdlcs Re(t) =(y ()| CACE|w. (1)) and Rp(1)
=(y ()| CECr|y (1)), defined by the collapse operators

Cr=V2Ka+Té-, Cp=v2—-T6-. (12)

If the cavity mode is initially in the vacuum state, the
conditioned wave function factorizes in the form |y.(t))
=|a(1))|A.(t)), where |a(t)) is a coherent state and
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FIG. 3. Intensity correlation function at detector F for
R =0.01 and (i) '=0.4; (ii) ' =0.5; (iii) ' =0.6; (iv) [ =0.8;
(v) r=0.9; (vi) r=1.0.

Using Egs. (14), the corresponding photon detection rates
(photon fluxes) are

Rr=R(+RT) " (F2+ R,
(16)
R;T-:‘;‘?._RF

Consider the case T'=0 which produces the largest
bunching effect. In this case the incident light is focused
within the atomic absorption cross section and we might
expect a weak incident beam to be completely absorbed
(reflected). Indeed, the transmitted photon flux is very
small— Ry~ R ? rather than Rp~ R. However, it is not
zero; a few photons are transmitted. To understand why,
and why these photons are highly bunched, we consider
the wave-function collapse that accompanies the detec-
tion of a photon in transmission. Applying Cr to Eq.
(15) gives
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Entanglement between a coherent-state
source and a qubit
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Comment on “Some implications of the quantum nature of laser fields for quantum computations”

Wayne M. Itano
Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 803035, USA
(Received 25 November 2002; published 14 October 2003)

A recent discussion of quantum limitations to the fidelity with which superpositions of internal atomic
energy levels can be generated by an applied, quantized, laser pulse, is shown to be based on unrealistic
physical assumptions. This discussion assumed the validity of Jaynes-Cummings dynarmics for an atom inter-
acting with a laser field in free space, that 1s, when the atom 1s not surrounded by a resonant cavity. If the laser
field is a multimode quantum ccherent state, and the Rabi frequency is much greater than the spontaneous
decay rate, then the total atomic decoherence rate is on the order of the spontaneous decay rate. With the use
of a umitary transformation of the field states due to Mollow, it can be shown that the atomic decoherence rate
is the same as if the laser field were treated classically, without any additional contribution due to the quantum

nature of the laser field.

DOI: 10.1103/PhysRevA.68.046301

The quantum dynamics of a two-level atom in free space
interacting with a resonant, coherent, quantized electromag-
netic field 1s important from the standpoint of pure physics
and potentially for practical applications. For example, some
proposed implementations of quantum computation depend
on the ability to accurately generate arbitrary superpositions

of two atomic states by means of applied, resonant fields. If
LL,_ ,“,t,‘...A,J C 1,1 &

PACS nmumber(s): 03.67 Lx, 42.50.Ct

the field. All radiation emitted by the atom must go into that
mode, and all radiation absorbed by the atom must come out
of that mode. Thus, emitted radiation stays around and can
be reabsorbed, and the absorption of radiation by the atom
decreases the intensity of the applied field. The combination
of these two effects leads to the complicated Jaynes-
Cummings atomic dynamics, including the well-known col-

langes and revivals The former affect (reabsorntion of emit.
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Some implications of the quantum nature of laser fields for quantum computations

Julio Gea-Banacloche
Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701
(Received 29 January 2001; revised manuscript received 9 August 2001, published 4 January 2002)

The quantum nature of the laser fields used in many proposed schemes for the manipulation of quantum
information may have important consequences for some very large scale quantum computations. Some of these
consequences are explored here, focusing especially on phase errors and their effects on error-correction
schemes. Depending on the way the logical gates are performed, constraints are found on either the required
number of photons per coherence time put out by the laser source, or the source’s power

DOL 10.1103/PhysRevA.65.022308

L. INTRODUCTION AND MOTIVATION

Many schemes proposed for the manipulation of quantum
information, on a wide variety of physical qubits, rely to
some extent or another on laser pulses. While the fields of
these pulses may typically be regarded as being classical to
an excellent approximation, they are, in fact, quantum sys-
tems themselves, and as such they are subjected, in principle,
to limitations such as the uncertainty principle and the pos-
sibility to become entangled with the physical qubits. The
possible impact of these limitations on gquantum computing
has recently been the subject of some attention [1-3].

This paper focuses on the constramts arising from the
requirement that the error rates due to the quantum nature of
the field he sufficiently small for arror-correction methods to

PACS number(s): 03.67.Lx, 89.70.+¢c, 42.50 Lc

(Tn what follows this type of Hamiltonian will be taken as
characteristic of ““one-photon type” transitions.) It is easy to
see that the desired transformation is accomplished by any
pulse E(f) of the form E(£)=FEy(#)e'? with E, real and ¢
=0, such that

2 foogEo(r)dr: /2 (2)

1]

(this is known as a 7/2 pulse). If the pulse phase is ¢#0,
then the transformation accomplished is [0}—(]0}
+e P1NV2, [1)—=(|0)—e'?13)/v2 instead. Of course,
the phase of the pulse itself is arbitrary, but when one con-
siders a sequence of pulses all acting on the same qubit. their
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quantify atom-field entanglement in various cases of interest.
We find that the entanglement decreases with the average
number of photons 7 in a laser beam as E o log, /7 for
n— 00,

I. INTRODUCTION

In many protocols for the implementation of quantum logic,

atom-field entanglement in a given experiment is the focal
area of the light beam. For instance, in an ion-trap quantum
computer containing several ions each ion can in principle
be addressed by focusing a laser beam onto the appropriate
position. The focusing requirements are then obviously deter-
mined by the distances between neighboring ions. The same
would apply to the situation where several atoms are kept in-
side optical cavities [6], for the purpose of quantum computa-
tion [7] or communication [8]. For a small array of qubits with
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The quantum nature of the laser fields used in many proposed schemes for the mampulatlon of quantum
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On the classical character of control fields in quantum information processing

S.J. van Enk! and H.J. Kimble®
1Bell Labs, Lucent Technologies, Room 2C-401
600-700 Mountain Ave, Murray Hill NJ 07974
2Norman Bridge Laboratory of Physics 12-33
California Institute of Technology, Pasadena CA 91125

Control fields in quantum information processing are virtu-
ally always, almost by definition, assumed to be classical. In
reality, however, when such a field is used to manipulate the
quantum state of qubits, the qubits never remain completely
unentangled with the field. For quantum information pro-
cessing this is an undesirable property, as it precludes perfect
quantum computing and quantum communication. Here we
consider the interaction of atomic qubits with laser fields and
quantify atom-field entanglement in various cases of interest.
‘We find that the entanglement decreases with the average

number of photons 72 in a laser beam as E o log, Ai/f for

n— 00,

I. INTRODUCTION

In many protocols for the implementation of quantum logic,

photon numbers because of the correspondence principle; for
a classical field there would be no entanglement. Of course,
if one were to use highly nonclassical states of the radiation
field, such as photon number states, then this expectation
would not be fulfilled, but for a laser beam well described by
a mixture of number states with a Poissonian probability dis-
tribution, the entanglement indeed decreases with the average
mimber of photons, as we will show here.

One important parameter that determines the amount of
atom-field entanglement in a given experiment is the focal
area of the light beam. For instance, in an ion-trap quantum
computer containing several ions each ion can in principle
be addressed by focusing a laser beam onto the appropriate
position. The focusing requirements are then obviously deter-
mined by the distances between neighboring ions. The same
would apply to the situation where several atoms are kept in-
side optical cavities [6], for the purpose of quantum computa-

tion [7] or communication [8]. For a small array of qubits with
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tribution, the entanglement indeed decreases with the average
number of photons, as we will show here.

Omne important parameter that determines the amount of
atom-field entanglement in a given experiment is the focal
area of the light beam. For instance, in an ion-trap quantum
computer containing several ions each ion can in principle
be addressed by focusing a laser beam onto the appropriate
position.| The focusing requirements are then obviously deter-
mined by the distances between neighboring ions. The same
would apply to the situation where several atoms are kept in-
side optical cavities [6], for the purpose of quantum computa-
tion [7] or communication [8]. For a small array of qubits with
large spacings, the assumption of a classical laser field may in-
deed be justified. However,|as the density of qubits increases,
the external control field must be focused ever more tightly
to avoid parasitic excitation of neighboring qubits. The ques-
tion then arises whether the assumption of a classical field
is justified for an atom localized on a wavelength scale with
illumination of large numerical aperture. With such localiza-
tion and illumination, the transmitted field might have im-
printed upon it measurable signatures of its interaction with
the atom. Such entanglement between atom and field would
cause quantum information encoded in the atom to decohere.
Of course there are avenues to mitigate this difficulty, as for
example by focusing in a cylindrical geometry to increase the
beam area while still keeping a small dimension along a linear
array of atoms. |Perhaps surprisingly, the general solution to
this problem, e.g., for forward scattering and fluorescent fields
is not known, even for the simple case of light focused onto
a two-state atom. Relevant work includes the application of
a standard input-output formalism to a quasi 1-dimensional
version of this problem [9], and the construction of exact 3-
dimensional vector solutions of the Maxwell equations, repre-
senting beams of light focused by a strong spherical lens [10],
but these calculations do not directly address the question of
entanglement,| We attempt to fix that problem here.

We wish to assess the importance of decoherence (and its
dependence on focusing parameters) due to atom-field entan-

P B r———— S———— = e e T e
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the laser light.

The evolution operator U(t) = exp(—iH¢/R) is not easily
evaluated explicitly in the general case. However, if the band-
width B (the spread of frequencies) of the field is sufficiently
small, a condition specified below, we can approximate the
Hamiltonian by that of an atom in a fictituous single-mode
coherent state with one frequency which we denote by wr.
We tackle the problem of introducing the required approxi-
mations in two steps.

First consider the following simple Hamiltonian,

H = haela+ hglalo™ +ola), (10)

with A = wr —wo the detuning from atomic resonance and a
and &' the annihilation and creation operators of the fictitu-
ous single-mode field. [The Hamiltonian H describes the well-
known Jaynes-Cummings model. In fact, using this model
the entanglement of a two-level atom interacting with a single-
mode quantized field was studied in the early 80s within a very
different context, namely, the occurrence of so-called collapses
and revivals on very long time scales [16]. Here we are rather
interested in short time scales. In fact the Jaynes-Cummings
model would not even be valid in our case for longer times.| For
the Hamiltonian (10) an analytical solution of the evolution
operator can be found easily [17]. In particular, expanding
the time-dependent atom-field wave function as

() = (R0 + e ()m) 1) (11)

T

we getl,

SHt) = ({cos(gﬂt/z) - % sin(Qnt/Q)} H0)

_Qig\éﬂ sin(Qﬂt/Q)cE}“(OO et
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due to technical imperfections in the classical driving field,
can easily be calculated (see, e.g., Sec. 4 of Ref [1]). In
addition, decoherence due to radiative decay of the atomic
states has been considered (see, e.g., Secs. 4.2.1 and 4.4.6.4
of Ref. [1]). Conceivably, the quantum nature of the driving
field might lead to additional deccherence.

[A recent attempt [2] to extend the calculations of Rabi
oscillations in free space to the case of a quantized driving
field used an inaccurate model, which is equivalent to a “‘re-
versed micromaser.”” That is, instead of an atom passing
through a resonant cavity, an atom is intercepted by an elec-
tromagnetic field, confined to a region of space traveling at
the speed of light| The context of this calculation was the
necessity, 1n quantum computation, for high accuracy of
quantum state control. Others have applied a more or less
equivalent model to problems in quantum information pro-
cessing [3]. In the “reversed micromaser” model, Fock
states |n) apparently represent quantized field excitations
confined to an 1maginary box moving at the speed of light.
While the atom is inside the field region, the atom-field state
is presumed to follow Jaynes-Cummings dynamics
[4]. |In this model, a coherent laser pulse is represented
by a superposition of moving Fock states |a)
:e_lalzﬁfzo(a”/\/aﬂn). Jaynes-Cummings  dynamics
then lead to entanglement of the atom and field and to effec-
tive decoherence of the atomic dynamics when a trace is
performed over the field degrees of freedom.

This picture is unrealistic and inaccurate for an atom in
free space, since there the field is not confined by a cavity.
The physical problem with the Jaynes-Cummings model in
free space 1s that it assumes that there is only one mode of

1050-2947/2003/68(4)/046301(2)/$20.00 68 0/

PACS number(s): 03.67.Lx, 42.50.Ct

the field. All radiation emitted by the atom must go into that
mode, and all radiation absorbed by the atom must come out
of that mode. Thus, emitted radiation stays around and can
be reabsorbed, and the absorption of radiation by the atom
decreases the intensity of the applied field. The combination
of these two effects leads to the complicated Jaynes-
Cummings atomic dynamics, including the well-known col+
lapses and revivals. The former effect (reabsorption of emit-
ted radiation) does not occur in free space, because the
emitted photon leaves the atom and does not interact with 1t
again. The latter effect (a decrease in the applied field upon
absorption of radiation by the atom) also does not cccur in
free space. It would correspond to a change in the laser pulse
amphtude upstream from the atom. A change in the ampli-
tude downstream does of course occur due to interference
with the coherent forward-scattered field.|Radiation is emit-
ted by the atom in a dipole {or other multipole) pattern intg
all modes of the field and also as coherent forward scattering.
Because the electromagnetic field has all modes available to
it, not just a single one, the atomic dynamics will differ from
those predicted by the Javnes-Cummings model.

The Jaynes-Cummings model makes an odd prediction,
which might be called the “beam area paradox.” The Jaynes-
Cummings (or “reversed micromaser”) model predicts that
the decoherence of the atomic system scales inversely with
the mean number of photons {#) in the laser pulse. If one
keeps the intensity at the site of the atom constant, but in-
creases {n) by increasing the cross-sectional area of the
beam, the decoherence is predicted to decrease. This has the
appearance of being a nonlocal effect of the presence o
absence of the field at arbitrarily large distances from the
atom. This result is more explicit in the work of van Enk and
Kimble [3], where the beam area 4 appears explicitly in. for
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The cascaded open systems
approach

H. Nha and H.J. Carmichacl,
Phys. Rev. A 71, 013805-1-6 (2005)
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couples to a classical driving field plus the quantized
vacuum. Itano suggests that all entanglement originates in
the interaction with the vacuum and is therefore resolved
through spontaneous emission.

The first and single most important question arising from
ltano’s comment is whether or not the entanglement reported SL
in [6.7] results in decoherence that is additional to. or in- / \ HA
cluded within, the decoherence rate obtained from the stan- -
dard treatment of spontancous emission for an atom driven \ /
by a classical field. The assertion (implication) of Refs. [6.7]
is that it is additional to; Gea-Banacloche states so explicitly i Tis
[9]: ... I wanted to focus. instead. on the decoherence due to
the quantum nature of the laser field, which I took to be a
separate source of error.” Itano’s position is that there is no
decoherence in addition to spontancous emission.

There is a second. more subtle question. featured most
clearly in the reply of van Enk and Kimble [10]. Does the
driven atom become entangled with the laser field at all?
Considering, for sake of argument. that the total decoherence
rate can be calculated as Itano claims, can any part of it be
attributed to entanglement between the laser field and atom?
By implication, if not directly, Itano claims such entangle-
ment is zero. The authors of the criticized work claim it is
not. though the entanglement is small [9.10]. agreeing at
most that the spontaneous emission calculation gives the cor-
rect number for the total decoherence rate. while asserting
that its account of the laser-entanglement part of the deco-
herence is incorrect.

{2005)

(10)

FIG. 1. Schematic diagram of the cascaded system of a two-
state atom (Hamiltonian f7,) driven by a coherent laser source
(Hamiltonian H; ). The various inputs and outputs are defined in the

text. (11a)

laser subsystem. denoted 7. and the target atom subsystem.
denoted A. The subsystems have free Hamiltonians /; and
;. and couple through the quantized electromagnetic field.
which is denoted as a reservoir with Hamiltonian /. Free

(11b)
es (per

fields ¢ ‘”‘ and "'j" provide vacuum inputs to subsystems L

(12a)
and A. Iuspccll\c . Subsystems L and | couple umdm,cllon—
ally through the common channel & —--g;‘” --:.‘__,. Er. The
scattered fields are the forward-scattered field t}.- and the

sideways-scattered field tl'_\-. All fields have units of the

(12b)

detec-

We return to these questions in Sec. VI. after presenting

square root of photon flux,

fields,

our own _analysis of the nrohlem of a two-state_atom driven

f) A A a—— =) A

The Lindblad £;_enters Eq. (5) through the coupling of L
and 4 to the common (forward) scattering channel via the
field £.(¢'), where a decay rate 2« is introduced phenom-
enologically to parametrize the strength of the coupling to
the atom; this coupling strength depends on the overlap of
the atomic dipole mode with the solid angle subtended by the
laser pulse. The Lindblad L accounts for the interaction of

1 mnr

[R P S (0 Wi = XA o v m h - R FETTITLS

A master equation for L@ is derived in the Born-

LI LIS TOHITULELONT TS UTIAITCC O COUpIINgG UL e laser
source to the target atom is explicit. The last term, propor-
tional to d«,, in Hamiltonian (10) annihilates a laser photon
and excites the atom, but there is no term d'& for the re-
emission of photons into the laser field. Thus, as Ttano
pointed out, interaction with the atom does not change the
laser field upstream from the atom (the time-retarded field at
the source). The atom does, however, absorb photons emitted
a retardation time earlier by the laser source. Photons are
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DECOHERENCE OF A TWO-STATE ATOM DRIVEN BY...

Urllle) = expl(#/A)(H + He+ Hig)(lc)], (4)

where H is the interaction between L and R. Then from the
reservoir couplings noted above, applied formally at ¢ =0,
by a standard derivation, the equation of motion for the re-
duced density operator p’' =trz(y') is [11-13]

L1
pr = Hop 1+ Lip + Lip, )

where £ 1s the Lindblad superoperator,

" 1., - 1 ., -
cézo-oT—EOTO-—E-OTO, (6)

HOZHL+HA+1.ﬁVKLKA(aéTé'ffd‘&ﬁ,), (7)

where &, and ¢_ are [raising and lowering operators for the
atom. The forward- and side-scattering jump operators are

y Y %
Je= V2 d+ V2,6, || Jo= V2K, 6. (8)

The Lindblad £;_enters Eq. (5) through the coupling of L
and 4 to the common (forward) scattering channel via the
field £.(¢'), where a decay rate 2« is introduced phenom-
enologically to parametrize the strength of the coupling to
the atom; this coupling strength depends on the overlap of
the atomic dipole mode with the solid angle subtended by the
laser pulse. The Lindblad £ 7, accounts for the interaction of

a ER T = 14
B WA (M o SIS A
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Hy=H,+H,— ihs,d'd— iﬁ%@;&, B e, B8

(10)

and suffers quantum jumps,

|¢7’REC>_)JAF|I’REC>= (11a)

‘JREC>"‘}S‘JREC> (Hb)

determined in a Monte Carlo fashion with probabilities (per
time step dt)

Pra~ <¢’REch}jF‘¢REc>dt> {12a)

Pa~ (lff’REc‘jysWREcmf- (12b)

Jumps executed by the operators g wand g - denote the detec-
tion of a photon in the forward- and side-scattered fields,
respectively (£, and £, in Fig. 1).

In this formulation the unidirectional coupling of the laser
source to the target atom is explicit. The last term, propor-
tional to d«,, in Hamiltonian (10) annihilates a laser photon
and excites the atom, but there is no term d'& for the re-
emission of photons into the laser field. Thus, as Ttano
pointed out, interaction with the atom does not change the
laser field upstream from the atom (the time-retarded field at
the source). The atom does, however, absorb photons emitted
a retardation time earlier by the laser source. Photons are
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states has been considered (see, e.g., Secs. 4.2.1 and 4.4.6.4
of Ref. [1]). Conceivably, the quantum nature of the driving
field might lead to additional decoherence.

A recent attempt [2] to extend the calculations of Rabi
oscillations 1n free space to the case of a quantized driving
field used an inaccurate model, which is equivalent to a “re-
versed micromaser.”” That is, instead of an atom passing
through a resonant cavity, an atom is intercepted by an elec-
tromagnetic field, confined to a region of space traveling at
the speed of light. The context of this calculation was the
necessity, in quantum computation, for high accuracy of
quantum state control. Others have applied a more or less
equivalent model to problems in quantum information pro-
cessing [3]. In the “reversed micromaser” model, Fock
states |n) apparently represent quantized field excitations
confined to an imaginary box moving at the speed of light.
While the atom is inside the field region, the atom-field state
18 presumed to follow Jaynes-Cummings dynamics
[4]. In this model, a coherent laser pulse is represented
by a superposition of moving Fock states |a)
:efl‘”‘zzfzo(a”/\/aﬂn). Jaynes-Cummings  dynamics
then lead to entanglement of the atom and field and to effec-
tive deccherence of the atomic dynamics when a trace is
performed over the field degrees of freedom.

This picture is unrealistic and inaccurate for an atom in
free space, since there the field is not confined by a cavity.
The physical problem with the Jaynes-Cummings model in
free space is that it assumes that there is only one mode of

1050-2947/2003/68(4)/046301(2)/$20.00
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free space. It would correspond to a change in the laser pulse
amplitude upstream from the atom. A change in the ampli-
tude downstream does of course occur due to interference
with the coherent forward-scattered field. Radiation is emit-
ted by the atom in a dipole (or other multipole) pattern into
all modes of the field and also as coherent forward scattering.
Because the electromagnetic field has all modes available to
it, not just a single one, the atomic dynamics will differ from
those predicted by the Jaynes-Cummings model.

The Jaynes-Cummings model makes an odd prediction,
which might be called the *“beam area paradox.” The Jaynes-
Cummings (or “‘reversed micromaser™) model predicts that
the decoherence of the atomic system scales inversely with
the mean number of photons {#) in the laser pulse. If one
keeps the intensity at the site of the atom constant, but in-
creases {n) by increasing the cross-sectional area of the
beam, the decoherence is predicted to decrease. This has the
appearance of being a nonlocal effect of the presence or
absence of the field at arbitrarily large distances from the
atom. This result is more explicit in the work of van Enk and
Kimble [3], where the beam area 4 appears explicitly in, for
example, Eq. (31), and where they state, “Decreasing the
focal area 4 will increase the amount of entanglement.”|

If the applied laser field is treated classically, but a phe-
nomenological decay rate y for the upper level is included,
one finds that the atomic decoherence rate is on the order of
v 1f the fleld is strong. *“Strong™ here means that the time
required for the atom to undergo an induced transition (Rabi
oscillation) is much less than the spontaneous lifetime of the
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filled circles indicate numerical results for times =, = 27 "n
for n = 1...16, while the solid curves correspond to the ap-
proximate analytic solution (28).

1. Entanglement in typical experiments

So how much do atom and field become entangled in a

T —

It is perhaps also interesting to compare these numbers
to those for a dipole transition under similar circumstances.
For instance, for the 65/, to 6Py, dipole transition in Cs
(at a wavelength A a2 850nm, and an upper state lifetime of
7o & 31ns), at the same laser power P and the same focus-
ing area A, one would have a duration of T = 0.46ns for a
NOT operation, an entanglement of £ = 7.6 x 107° and a
spontaneous emission probability during the NOT operation
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of Ref. [1]). Conceivably, the quantum nature of the driving
field might lead to additional decoherence.

A recent attempt [2] to extend the calculations of Rabi
oscillations in free space to the case of a quantized driving
field used an mnaccurate model, which is equivalent to a “re-
versed micromaser.” That is, instead of an atom passing
throug
tromag
the sp
Necess
quantu
equiva This expression describes the entanglement well even when 7 A 22 100{pm)?, a typical quadrupole moment of @ & eag [19)]
cessing is not small but 7% /|a? is. and a power of P = 100pW, yields for a wavelength of 730nm
states {vorresponding to the 8,5 to Dsyy transition in Ca't [18])
confin 1° T =~ 3.1pus and |a|® &~ 1.1 x 10°, so that
While
s pr o |
(4] Ir rd IDecreasing the focal area A will increase the amount of entan-
by a ¢ e glement, But even very strong focusing to aress of size A & \?
=e E = ; still does not lead to large entanglement. In fact, if we make
then le alre A smaller by a factor 100 so that A ~ 1(#111)2 (although we
tive d o 7 2 should note that the 1-dimensional model of Eq. (4) would
perfori B cease to be valid for such small values of A) and decrease the

Thi . . . 2 power by a factor of 100 as well such that T remains constant,
free sy e 57 the entanglement increases by about a factor of 100 to a value
The pl o A E = 107° that is still very small.
free sp R It is interesting to compare the smallness of the entan-
glement to the probability of spontaneous emission. Here

10l . = - L : , the lifetime 7y of the metastable Ds/o state is about 1 sec.

1502 " " i i - = Since the interaction time is T = 3.1y sec, the sponta-

FIG. 2. Average entanglement as a function of scaled time neous emission probability during a NOT operation is thus

7 for different values of the average photon number 7 = |a/?; Papon = T/(2m0) = 1.6 x 107° (the factor 1/2 arises since the
from top to bottom curves we have |a|* = 2°,27 2!, The atom spends halfl of the time in the excited state). |
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all rates are dimensionless numbers; 2I"+ 2 =2 is the to-
tal spontaneous emission rate apd 0 =T = I. Using Eqgs. (14), the corresponding photon detection rates
For this example the non-Hefmitian Hamiltonian is (photon fluxes) are

# =ih [NRK]2 a'—é)—&a-‘a Rr=R(1+RT) ~\(F24 7I)
—6+6- —3KTad4], an

where the first term on the right-hand side represents a
classical current driving the laser mode; 6+ and & - raise
and lower the atom between states | —) (lower) and |+
(upper). There are [now two kinds of collapses occur-
ring at rates Rg(s =y ()| CECelwe (1)) and Rz(1)
=(y. () |CECr| . (1)), defined by the collapse operators

(16)

Rp=R—Rr.

Consider the case T'=0 which produces the largest
bunching effect. In this case the incident light is focused
within the atomic absorption cross section and we might
expect a weak incident beam to be completely absorbed
(reflected). Indeed, the transmitted photon flux is very
’ small— Rp~ R? rather than Rr~ 7. However, it is not
Cr=V2Ka+T6-, ('_:F.—Jz—_ré_ . (12) zero; a few photons are transmitted. To understand why,
and why these photons are highly bunched, we consider
If the cavity mode is initially in the vacuum state, the the wave-function collapse that accompanies the detec-
conditioned wave function factorizes in the form |y, (1)) tion of a photon in transmission. Applying Cr to Eq.
=|alr))|A.(1)), where |a(t)) is a coherent state and (15) gives

|A4.(¢)) is the state of the atom. After a short time _ _

alt)— ay; =~/ #/2K. Then the quantum trajectory for |A.)= (4 Rr) ~'2(T| =) = VAT +)), an
the atom is governed by the Schridinger equation and
collapse operators

and the new detection rates

Z _ Rejp =R(F2+ RT) "' [(T—1) 2+ AU,
|A)=—(64+6-+RTE4)| A, (13) )
. N R B(E2L 9 ~ 1512
Cr=JR+T6-, Cp=vI-T6-. (14) Bpie= T Ret RIS ALY C A,

For T'=0 the forward photon flux is now I'=1, a change
Rpir/Rr~1/R2% This huge increase in flux produces the

th

de Equations (13) and (14) are equivalent to those for an

th atsm—inside—s—sehorentlydelven sanity da the badsouity

tion and the second is detected in the backward direction. (3] J. Dalibard, Y. Castin, and K. Mdlmer, Phys. Rev. Lett.
To conclude let me answer a question that might seem, 68, 580 (1992).

superficially, to raise doubts about the new theory. It is [4] G. C. Hegerfeldt and T. S. Wilser, in Proceedings of the

usual to model the interaction between an atom and Il International Wigner Symposium, Golsar, July 1991,

coherent light in a time-symmetric way, with an interac- cdited by H. D. Docbner, W. Scherer, and F. Schroeck

tion Hamiltonian that can raise and lower the atom. # (World Scientific, Singapore, 1992). ;

[Eq. (11)] only includes the raising part; it is reasonable, (5] IEh D"];" "\"\ §6 P:;;;n;;,}gsz)Zullur, and C. W. Gardiner,

then, to ask: How is it possible for a Rabi oscillation to (6 M. T. Kolobov and I. V. Sokolov, Opt. Spektrosk. 62, 112

occur? The answer lies in the collapse operator Cr [Eq. (1987).

(14)]. This accounts for transitions that lower the atom [71 P. R. Rice and H. J, Carmichael, IEEE J. Quantum Elec-

while a photon is emitted into the coherent beam that ex- tron. 24, 1351 (1988).

cites the atom. Consider the limit ##— oo, I'— 0, with (8] G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and

VRT =q/2, where Q is the Rabi frequency. In the ap- H. J. Kimble, Phys. Rev. Lett. 67, 1727 (1991).
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FIG. 2. Sample Monte Carlo simulations of the Rabi oscillation
of the driven two-state atom in the presence of spontaneous emis-
sion, total emission rate y=2x;+2x: for a Rabi frequency ()

Vi k4|l =27 (for coherent state |ex); ) and forward-scattering rate
(a) 2x4/ ¥=0.04, (b) 2K,/ y=0.4. The probability p,(t) to find the
atom in the excited state is plotted as a function of time. Open
(closed) triangles mark the times of forwards-scattering (side-
scattering) quantum jumps.

does not put the atom in its ground state. In fact. the unique

form of the J;; jump is of interest for a separate reason. In the
absence of a term 4'¢_in the Hamiltonian /7. we might

PHYSICAL REVIEW A 71, 013805 (2005)

scattering out of the forward channel. The forward part.
moreover. is subject to a 1/n effect as the previous authors
have claimed [6.7.9.10].

V. MASTER EQUATION FOR THE ATOM

Considering the different forms of the quantum jumps in
the two channels, it 1s unclear whether the total decoherence
ratc may be considered to be due to spontancous emission
alone or not. To resolve this issue we set the quantum trajec-
tory formulation aside and derive a master equation for the
atom alone.

We note first, from Eq. (5). that the equation of motion for
the reduced density operator of L. p; =tr,(p’). is given by the
laser master equation

. 1
pr=7[H.p )+ L ppr. (14)
ifi L

J.=V2K,4. (15)

To generate a coherent state of the intracavity field. we adopt
the model Hamiltonian

H, =hwata+ it [N(t)e "t'a’ — N * (He'“'a], (16)

where w; is the cavity resonant frequency and A(z) is the
complex amplitude of a time-dependent classical current
driving the cavity mode. In a rotating frame, with frequency
wy. it is readily shown (assuming the initial state to be co-
herent) that the intracavity field is in the coherent state
|a(2));. with «(t) satisfying the equation

al(t) = k,MMt) — k,yall) (17)
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The theory of an optical maser due to Lamb!~3
is generally accepted as giving a realistic ac-
count of laser oscillation. The laser radiation
was described by means of classical electro-
dynamics while the atoms were treated quan-
tum mechanically. In this way, phenomena
such as frequency pulling, variation of inten-
sity with cavity tuning, mode competition, etc.,
were successfully described. There has been
considerable interest recently in a quantum
theory of laser behavior. It is the purpose of
this Letter to give an account of such a theory.

To simplify the presentation we consider on-
ly single-mode oscillation and ignore the effects
of atomlc mot10n and Spa.tla.l vanatwn of the

laser radiation.

The states @ and b of the atom are assumed
to decay as in the Wigner-Weisskopf theory
of radiation damping. For the state ¢, we in-
troduce a group of states ¢,s where ¢ is a lev-
el to which the atom decays with the emission
of (nonlaser) radiation of type s. Similarly b
decays to d,0; the decay constants are denot-
ed by 7, and y;, respectively.

To obtam [ ?2’“0 +T) we must follow the
time development of the combined atom-field
system until the atom has decayed, and then
trace over the states ¢,s and d,0. We may
obtain the rate of change of the density matrix
due to ma_ny atoms injected at random times

following equations of motion for the laser ra-
diation (written in the Schridinger picture):

tJ.me characterlzmg the growth or decay of the

;- = B ’ e, r *
Pan’= fu )S'Bpﬂ n' [(R+I)Rn 1‘1'+(ﬁ +1}Rn’ n*]pn n’+mn—l,n'—l+ﬁﬂ'—1,?3-1 1

—_a * ] ? —_

X(nn')"’"pn_l w1

(v/@)N e+ 1) +1)]1V2p

n+l,n'+1’

/R an, |+




a(t)|n,—) + b(t)|n+1,+)



