Controlling the mechanical state of an atom

Joe Hope,
Stuart Wilson, Andrew Reid, Michael Hush
André Carvalho, Matt James
But still… it moves

- BECs are routinely created in excited states
- Excitations are most obvious in atom laser output
- Pumping will exacerbate this issue
- Stability can be achieved passively or actively
Detector (measures condensate density)

\[\rho(\mathbf{r}) = |\psi(\mathbf{r})|^2 \]

Calculate moments of atomic density, eg.

Centre of mass position: \(\langle x \rangle = \int x \rho(x) dx \)
Condensate width: \(\langle x^2 \rangle = \int x^2 \rho(x) dx \)

etc.

Sloshing? Offset potential

Breathing? Adjust strength of potential
Semiclassical feedback to a BEC

Fast early effect, slow leakage induced by nonlinearities
Solved optimally for Gaussian states (Gaussian initial state is preserved)
Doherty and Jacobs, PRA 60, 2700 (1999).

Effect of the measurement:

\[
d\rho = \frac{-i}{\hbar} [H_A, \rho] \ dt + \alpha D[q] \rho \ dt
\]

Conditional state (on a specific measurement):

\[
d\pi_t = \frac{-i}{\hbar} [H_A, \pi_t] \ dt + \alpha D[q] \pi_t \ dt
\]

\[
+ \sqrt{\eta \alpha} \left(q \pi_t + \pi_t q - 2 \pi_t \ Tr[q \pi_t] \right) \ dW
\]

Solved optimally for Gaussian states (Gaussian initial state is preserved)
Doherty and Jacobs, PRA 60, 2700 (1999).
\[dQ(x,y,t) = \left(\omega \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right) - k_p \left(\int \int dx' dy' y' Q(x',y',t) \frac{\partial}{\partial y} + \frac{\hbar \alpha}{4m\omega y^2} \right) \right) Q(x,y,t) \, dt \\
+ 2\alpha \sqrt{\frac{\hbar \eta}{2m\omega}} \left(4x + \frac{\partial}{\partial x} - 4 \left(\int \int dx' dy' x' Q(x',y',t) \right) \right) Q(x,y,t) \, dW \]
High measurement strength \rightarrow fast feedback / high energy steady state
Modulating measurement strength

Measure hard (fast control), then weakly (cold steady state)

Restrict to Gaussian states, linear feedback

\[\langle dx_1 \rangle = (2x_3 + 4\alpha x_4^2) \, dt \]
\[\langle dx_2 \rangle = (-2x_3 + 2k_p x_2 + 4\alpha x_6) \, dt \]
\[\langle dx_3 \rangle = (x_2 - x_1 + k_p x_3 + 4\alpha x_4 x_6) \, dt \]
\[\langle dx_4 \rangle = (2x_6 - 4\alpha x_4^2) \, dt \]
\[\langle dx_5 \rangle = (-2x_6 + \alpha - 4\alpha x_6^2) \, dt \]
\[\langle dx_6 \rangle = (x_5 - x_4 - 4\alpha x_4 x_6) \, dt \]

x_1 = q^2
x_2 = p^2
x_3 = qp
x_4 = V_q
x_5 = V_p
x_6 = V_{pq}

What is a good figure of merit?

\[E(t_f) \]
\[\int_0^{t_f} E(u) \, du \]
\[\int_0^{t_f} \left(E(u) + k_c \alpha(u)^2 \right) \, du \]
- "Bang-bang" type control
- Hard to compute (particularly as optimal strategy changes)
- Dramatic changes in strategy lead to lack of robustness
Focus on knowledge

Cost \[\int_0^{t_f} (V_q(u)V_p(u) - V_{qp}(u)^2)du \]

Very stable curve
Near optimal energy curve \(~1\%
Superior final energy! \(~10\%

\(\alpha\)

\(\alpha\)

\(\alpha\)
The limitations of brute force

Pumped atom lasers need simultaneous control of spatial mode and statistics.

Stochastic FPEs for these systems are easy to generate, but not compute.

\[dQ(\alpha, t) = \ldots + \left(\alpha - \int \beta Q(\beta, t) \, d^2\beta \right) Q(\alpha, t) \, dW \]
Summary

1. Including measurement in a simple model of atomic control
 - leads the system to a unique steady state
 - the steady state is above the ground state energy

2. Adjusting the measurement strength can lead to the true ground state efficiently

3. We are developing techniques that allow control theory to be applied to non-analytic, high dimensional models.