Interaction of a Bose Einstein Condensate with a Permanent Magnetic Lattice on an Atom Chip

Mandip Singh, Michael Volk, Alexander Akulshin, Russell McLean, Andrei Sidorov, Peter Hannaford

Centre for Atom Optics and Ultrafast Spectroscopy ARC Centre of Excellence for Quantum-Atom Optics Swinburne University of Technology, Melbourne, Australia

Outline

- Introduction
- Permanent Magnetic Lattice Construction on an Atom Chip
- Effect of the Lattice on a Bose Einstein Condensate

Optical Lattice vs Magnetic Lattice

A Lattice is a Periodic Potential

Optical Lattice

- Based on electric dipole force
- Requires phase stability
- State manipulative

Magnetic Lattice

• Based on magnetic dipole force

 $V(r) = m_F g_F \mu_B B(r)$

- Weak field seeking states are trapped
- Potential can be perturbed with RF
- Easily integrated on an atom chip

A Permanent Magnetic Lattice

Features of Permanent Magnetic Traps

- No need of current carrying wires
- Low Technical Noise
- Low Heating Rates ~ 3.2 nK/s (S. Whitlock, Thesis, 2007)

However, less flexibility in context of switching of the lattice potentials or trap

E. A. Hinds et al., J. Phys. D: Appl. Phys., 32, R119 (1999) S. Ghanbari et al. J. Phys. B : At. Mol. Opt. Phys., 39, 847 (2006)

Magnetic Lattice on an Atom Chip

RF Antenna

B. V. Hall., et al. J. Phys. B, 39, 27 (2006)

Magnetic Film Quality

DC sputtered on Si grooved substrate

Magnetization vs Applied Field

- Magneto optical Film GdTbFeCo, thickness ~1 μm
- Curie Temperature ~ 300°C, Roughness ~ 20 nm
- Remanent Magnetization $4\pi M \approx 3 \text{ kG}$
- Coercivity $\approx 6 \text{ kOe}$

Bose-Einstein Condensate on an Atom Chip

-1

-1.5

-2

- \bullet BEC in a Z-wire magnetic trap about 250 μm from the lattice
- Lattice effect is negligible at such a distance
- Number of atoms ~ 2×10^5

Axial Trap Frequency ~ 23 Hz

Radial Trap Frequency ~ 420 Hz

Diffraction of a BEC from a Magnetic Lattice

• Phase modulation of the condensate generates momentum states in quantum superposition $\Psi(x, y, z) = \sqrt{n(x, \overline{y, z})} e^{-i\phi_0(d)Cosky}$ ~250µm where $k = \frac{2\pi}{2\pi}$ or 80-100µm $\Psi(x, y, z) = \sqrt{n(x, y, z)} \sum (-1)^n J_n(\phi_0(d)) e^{inky}$ g • Wavefunction collapses after a measurement with -1 $\mathbf{0}$ +1a probability distribution $P_n = \left|J_n(\phi_0(d))\right|^2$ ma For $a = 10 \mu m$ Or the density distribution $v_r = 0.46mm/\sec$ Recoil velocity $\rho_{cond}(y) = A \sum \rho_0(y - nv_r t) |J_n(y)|^2$ Demands longer time of flight Chemical Potential ~ 1KHz

A. Gunther et al., PRL 95,170405 (2005)

Condensate Evolution in Free Fall (Lattice Effect)

- BEC is prepared far away from the lattice
- \bullet Gradually brought closer to the lattice in 25 ms and released after 200 μs

Maximum Horizontal Velocity = 90.2 mm/sec

Corrugation near the Lattice

- \bullet For $d<2~\mu m$ (a = 10 μm)
- Structure effect of the lattice dominates and higher harmonics should be considered

 $2~\mu m$ to 0.4 μm

Effect of Distance from the Lattice

Distance from surface increases

• At smaller distance there is a large initial velocity due to repulsion from the lattice (magnetic mirror effect)

Effect of Temperature

For TOF = 8 ms

- As temperature increases the trap volume increases which means some atoms are further away from the lattice
 - → Therefore they are not affected as strongly by the lattice potential

Future Directions

- Load magnetic lattice (homogeneity of magnetic potential?)
- Two dimensional magnetic lattice

S. Ghanbari et al. J. Phys. B : At. Mol. Opt. Phys., 39, 847 (2006)

- BEC coherence in magnetic lattice
- BEC to Mott Insulator Transition ?