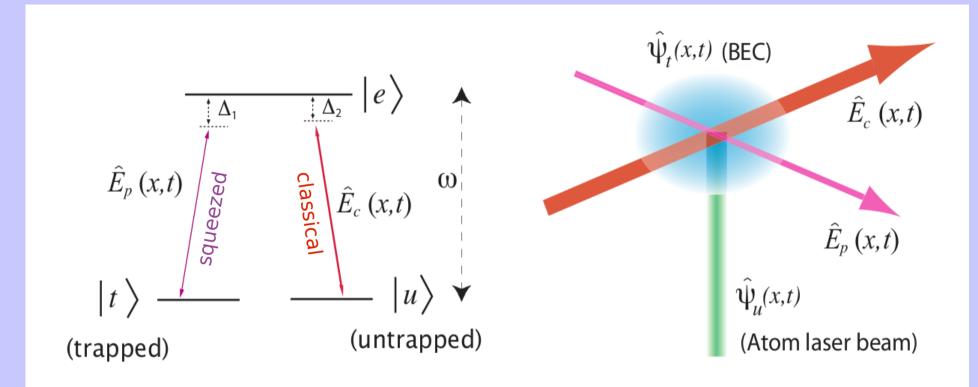
Squeezing an atom laser the easy way

Mattias Johnsson and Simon Haine

ARC COE for Quantum Atom Optics, Australian National University, Canberra

Using squeezed light



- Outcoupling atoms with squeezed light can generate a squeezed atom laser beam
- Requires squeezed light at the right frequencies

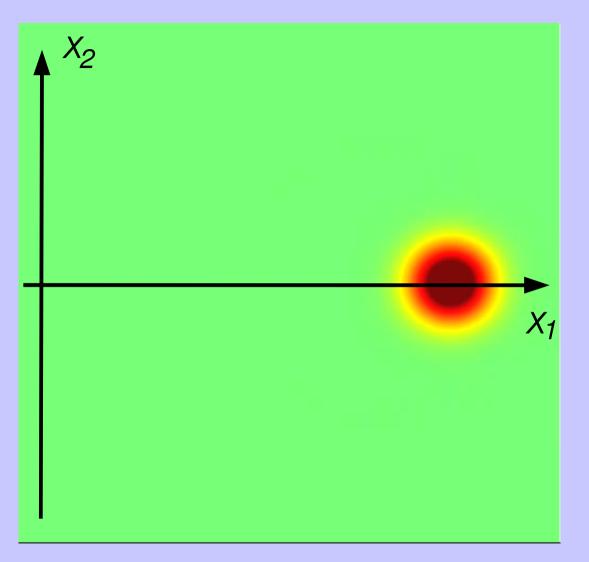
Kerr squeezing

The Kerr Hamiltonian is given by

$$\hat{H} = \hbar \omega \hat{a}^{\dagger} \hat{a} + \frac{\chi}{2} \hat{a}^{\dagger} \hat{a}^{\dagger} \hat{a} \hat{a}$$

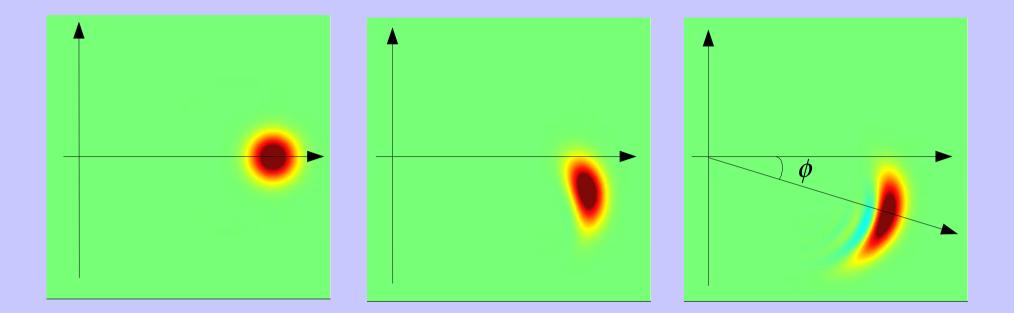
- Well studied in nonlinear and quantum optics
- Observed in systems like doped optical fibres
- Gives rise to quadrature squeezing

Kerr squeezing - Wigner picture



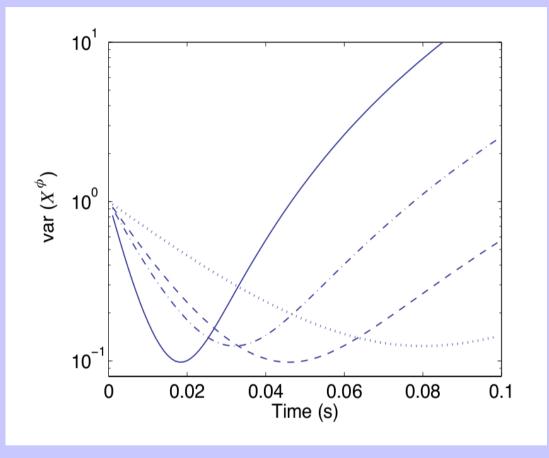
Coherent State: $var(X_1) = var(X_2) = 1$

Kerr squeezing - Wigner picture



The nonlinearity causes a shearing effect Var(X^{ϕ}) < 1 indicating quadrature squeezing

Kerr squeezing – analytic solutions



$$\hat{H} = \hbar \omega \hat{a}^{\dagger} \hat{a} + \frac{\chi}{2} \hat{a}^{\dagger} \hat{a}^{\dagger} \hat{a} \hat{a}$$

Solid: *X*=0.1*ħ*, *N*=1000

Dashed: *X*=0.4*ħ*, *N*=1000

Dot-dash: *X*=0.1*ħ*, *N*=500

Dotted: *X* =0.04*ħ*, *N*=500

- Squeezing reaches a maximum, then decreases
- Amount of squeezing depends on the nonlinearity

The Kerr effect and atom lasers

$$\hat{H} = \hat{\Psi}_{t}^{\dagger}(\hat{T} + \hat{V}_{trap})\hat{\Psi}_{t} + \frac{U}{2}\hat{\Psi}_{t}^{\dagger}\hat{\Psi}_{t}^{\dagger}\hat{\Psi}_{t}\hat{\Psi}_{t}$$

$$+ \Omega\hat{\Psi}_{t}^{\dagger}\hat{\Psi}_{u} + \Omega^{*}\hat{\Psi}_{u}^{\dagger}\hat{\Psi}_{t}$$

$$+ \hat{\Psi}_{u}^{\dagger}(\hat{T} + \hat{V}_{grav})\hat{\Psi}_{u} + \frac{U}{2}\hat{\Psi}_{u}^{\dagger}\hat{\Psi}_{u}^{\dagger}\hat{\Psi}_{u}\hat{\Psi}_{u}$$

$$= Beam$$

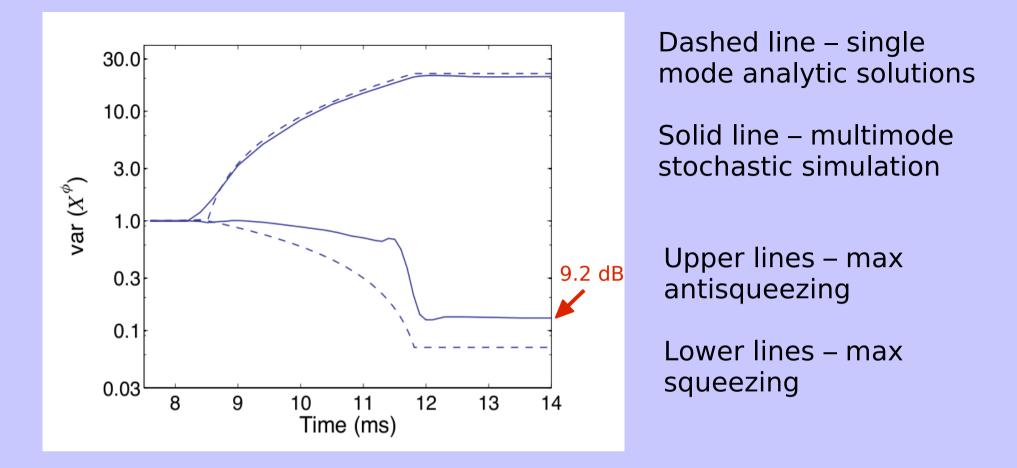
- The beam Hamiltonian looks just like the Kerr Hamiltonian
- Nonlinearity now dependent on U and beam density
- The further the beam falls, the more it squeezes
- After some distance, squeezing effect turns off

Simulating the system

- GPE is not good enough, so use stochastic methods
- Want to make this realistic
 - simulation should be multimode
 - include back action on the BEC
 - should include spatial effects
- Need a mode-matched local oscillator. Then

$$\hat{X}^{\phi} = \hat{b} + \hat{b}^{\dagger}, \text{ where } \hat{b} = \int_{z_1}^{z_2} L(z) e^{i\phi} \hat{\Psi}_u(z) dz$$

where L(z) is the mode function of the local oscillator



Plots of measured squeezing and antisqueezing in a region 20 μm long, well below the BEC.

Beam wavefront reaches region 8ms after outcoupling starts; steady state reached after 12ms.

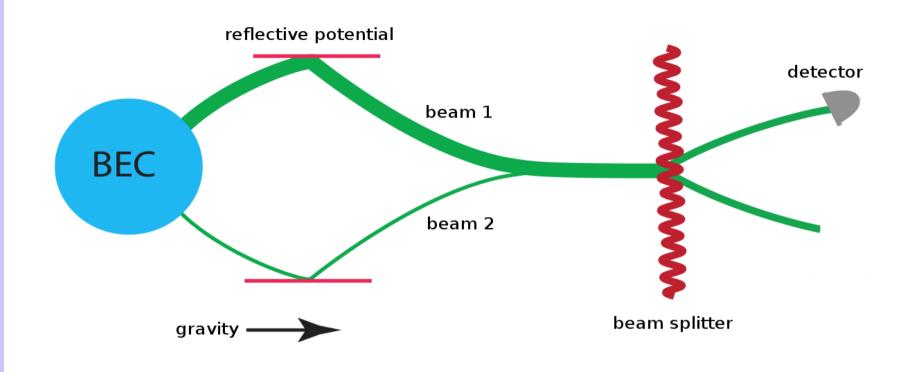
Realistic numbers... and problem

- Let's take some realistic numbers
 - Rb Raman atom laser, region 1cm below BEC
 - Choose mode matching region 25 μ m long
 - $-\omega = 2\pi (60 \times 600 \times 600)$
 - -N = 500,000
 - Outcoupling frequency $\Omega = 500$ rad/s
- Obtain best squeezing of $var(X^{\phi}) = 0.14 = 8.5 dB$

Realistic numbers... and problem

- Let's take some realistic numbers
 - Rb Raman atom laser, region 1cm below BEC
 - Choose mode matching region 25 μ m long
 - $-\omega = 2\pi (60 \times 600 \times 600)$
 - -N = 500,000
 - Outcoupling frequency $\Omega = 500$ rad/s
- Obtain best squeezing of $var(X^{\phi}) = 0.14 = 8.5 dB$

Problem: The local oscillator is assumed to be a strong coherent state. It will Kerr squeeze too!



What happens if we combine two Kerr-squeezed beams on a beam splitter? We get number squeezing!

For two equal-strength beams, and same parameters as before, we get intensity noise of 0.17 = 7.7dB

Intensity noise suppression is robust to relative beam strength.

Conclusions

- Scheme is highly tunable
- Need high, but achievable, beam densities
- Can get quadrature squeezing, but getting a local oscillator could be tricky
- Scheme can also generate a number squeezed beam