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Outline

The idea of GQMC in short

The Gaussian basis

Derivation of stochastic differential equations
(SDEs)

Systematic errors: source and possible solutions
Symmetry projection scheme
Application: Hubbard ladders

Conclusion



GQMC: A stochastic phase space method

Expansion of the density operator in a Gaussian operator basis:

Inverse temperature Phase space variables

pd) — [aaraoin,

Density operator Probability distributio\

Gaussian operator basis

v Stochastic
S D E Differential

Sptions

Trajectories A(7T) in phase space with positive weights
Observables: Functions of phase space variables F'()\)

Expectation values: Weighted averages over trajectories



Gaussian operator basis

Basis: A(n) = det(1 —n) : e~ (2+(HT_1)_1)6 :

Trace: 1t [(’}Léyj/\\(n)} — Ng,y

Expansion: /(T ZP JA(n;), P >0

n is a NxN matrix of
phase space variables
N: number of sites

n correspond to the equal
time Green functions

Positive expansion exists
Basis is overcomplete!

Introducing weight: A(A) = QA(n), A = (Q,n)

Integral form: p(T) = /dAP(A, T)/A\(A)



Derivation of the SDEs

Lp(r) = —4 [H,p(r)]

4 Differential properties
O\
~TT AT L e
Introduce expansion ¢me’A=nh+(1-n) on
d A I O
= [ aaPanAQ) = -5 [ axpr) () + A)A)
E

a o .
/d&dd P(A T)A(A) — /dAP(A, T)L[A(A)] Contains first and
T

Partial integration

/dgdiP(A, A = /QZAL’[P(A7 7)]JA(A)  Assume no boundary terms!
T

dip()\ 7)=L'[P(A,T)] == Fokker-Planck equation
-



Derivation of the SDEs | |

y ==Y g-dat; aTBCi%B/B
Fokker-Planck eq: — P (A, 7) = L'[P(), 7)]
dr Noise terms (Wiener

' increments) drawn from

R z/ normal distribution
SDE: d\o(7) = Aa(A)dT + Z BN AW, TT) (Wi (r)dWi (7)) = dr 6
(Stratonovich) (dWk(T)) =0
Drift term le'fu5|on term

Integration: Forward Euler, (semi-) implicit, higher order schemes

SDEs are not unique! There are several “gauge” choices.

72 5o —0 ® Does not change the Hamiltonian. But changes the SDE!
" e * Crucial trick for Hubbard model to get positive weights!

=3 No explicit manifestation of the negative sign problem!



Example: Hubbard model
HHub = —1 Z nzga =+ UznzzTnml — anza

(1,7),0 vr .

’LO‘ Jo

Final form of the SDEs: 2N+ | coupled equations:

dn, 1

: = 5{(1 —ns)AMn, +n, AP I -n,)}

T -

() —> full matrix-matrix multiplication

Ao = tiy — Oy {Ung—o — p + £} f = —sign(U) for o =|

182 y
 — _QH(n:,n)) < €N@EE (+') >=AUI8(r — 7')855:6,r
dr \

Weight grows exponentially,
but remains positive



Results for Hubbard model

—— Simulation — Simulation
— — — Exact — — — Exact

4 6 8 10 2 4 6

B B
2x2 system, U=1,t=1,<n>=0.5, 19,9 system, U=4, t=1,
40°000 trajectories <n>=0.875, 480000 trajectories

Use different

. . , Change integration
Use higher order quantization axis

. timestep
Integrator additional noise more trajectories



Fat tailed distributions

Diverging variance of the

transverse spln susceptibility

Some Monte Carlo measurements seem 10°
to be ill defined (diverging error bars). 102 |
Z 107
: R S
= Fat tailed distributions can S 10°®
o

become a problem in derivation of

SDFE’s: Boundary Terms! 107 |

Go back to derivatiy Fat power law tails!

/ d)L—P A DAR) = [ dAPQ, T)LIAQR)

Partial integration
[ars-P@a AR = [aAL (PG, DIAR)

+ boundary terms

— Slmulatlon
slope: -2.7 |

= Assumption is
wrong!
= SDE’s are no

longer valid!!!!



Boundary terms

This is a known problem! ;\\ \\
= Appearance of\p law
Gilchrist, Gardiner and Drummond, = -5+ tail at low t rature
PRA, 55(4), 3014, 1997: 2 i
Boundary terms found in some examples:
single-mode laser; anharmonic oscillator; ... —18>
2 2

Another indicator: spiking trajectories! log(n,

p
~13.48 e 0
prv ™ |
> -13.5 \r/\J l\ /7~ N ﬂ/VA\
© n'“/ - - - Emean i ) IA ) " -
G -1352} " = presence of nearly singular
E . .
1354} e T | trajectories
5.1 5.15 5.2 5.25 5.3

"= indicator, when boundary terms
become non-negligible

= Consistency: systematic
errors appear only after a certain B.

5.1 5.15 5.2 5.25 5.3



Possible solutions

* The SDE’s are not unique: Use gauges to change distribution P!
» “Fermi” gauges (like 17, — Rjje = 0)
» Additional noise terms (diffusion gauge)

» Arbitrary drift functions (drift gauges)

Ao (T) = Agdr + ) BE [dWi(T) — grd7]
k

dQ(7) = Agdt + Qg dW (1) BUT AT THE SAME TIME
WEIGHTS HAVE TO

REMAIN POSITIVE!!!

» Change basis .
= work in progress

* |In case of small systematic errors, use a symmetry
projection scheme to calculate ground state properties

Assaad et al., PRB 72,224518 (2005)



2x2, U/t=4, <n>=1

Symmetry breaking 2
e The SU(2) spin symmetry is not 1.5/ oM iy _
preserved in the cases with systematic — Exact |

errors L 1-§

Idea: Take density matrix from
simulation and project it onto the
ground state symmetry sector. 0 L

Mizusaki, Imada, Phys. Rev. B 69, 125110 (2004) 0 0.5 T 1.5 2

2x2, U/t=4, <n>=1

PGQMC ﬁPr — plasszT 0.5

(a)
» Ground state properties (not finite -1r S N+ Symm. Proj. |
temperature) ' — Bxact '
Py - o-1.5- :
» Projection is done a posteriori -
» Good agreement in many cases I

» T'rppy /T Psir measures the overlap
between density matrix and ground state 235 10 15 20 25
sector Pt

-



Results: Hubbard ladders

e Simulation of 2xL and 3xL Hubbard ladders
with different fillings n, interaction U

* Comparison of GQMC and PGQMC to

Density Matrix Renormalization Group
(DMRG) results (high precision)
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Inset: Relative errors
One standard deviation (O)
error bars. Exact result

should be within 20

Results agree
with DMRG



Conclusion

* Once more: the sign problem is not solved ..

e GOQMC is an elegant finite temperature method for fermions.
Further application examples are needed!

e Systematic errors in GQMC in SOME cases. But we have
indicators for their presence: fat tailed distributions, spiking
trajectories, broken symmetries...

* Fat tails may disappear with appropriate choice of gauges.

* Symmetry projection allows to obtain ground state properties.
In many cases it corrects the systematic errors of GQMC.There
are examples, where we could go beyond auxiliary field QMC!



Outlook: Recent news

* Projection method can be incorporated into the sampling.
Aimi and Imada, cond-mat/0704.3792

* Importance sampling (Metropolis algorithm) which favors the
ground state symmetry sector

e Better results than with projection a posteriori. Promising!

* Projected weights can become negative. Sign problem? For
doped systems with large U (>8).

* Work in progress!



