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Attack the sign problem



Outline
• The idea of GQMC in short

• The Gaussian basis

• Derivation of stochastic differential equations 

(SDEs)

• Systematic errors: source and possible solutions

• Symmetry projection scheme

• Application: Hubbard ladders

• Conclusion



GQMC: A stochastic phase space method
Expansion of the density operator in a Gaussian operator basis:

Density operator
Gaussian operator basis

Inverse temperature Phase space variables

Probability distribution

Trajectories          in phase space with positive weights

SDE
integration

Stochastic 
Differential 
Equations

Expectation values:  Weighted averages over trajectories

λλλ(τ)

Observables:  Functions of phase space variables F (λλλ)



Gaussian operator basis
n is a NxN matrix of 
phase space variables
N: number of sites

n correspond to the equal 
time Green functions

Positive expansion exists
Basis is overcomplete!

Introducing weight:

Integral form:

Tr
[

ĉ
†
xĉyΛ̂(n)

]

= nx,y

ρ̂(τ) =
∑

i

Pi(τ)Λ̂(ni), Pi ≥ 0

Λ̂(n) = det(1 − n) : e
−ĉ

†
“

2+(nT
−1)−1

”

ĉ
:

λλλ = (Ω,n)

ρ̂(τ) =

∫
dλλλP (λλλ, τ)Λ̂(λλλ)

Trace:

Λ̂(λλλ) = ΩΛ̂(n),

Expansion:

Basis:



Fokker-Planck equation

d

dτ
ρ̂(τ) = −

1

2

[

Ĥ, ρ̂(τ)
]

+

Introduce expansion

d

dτ

∫

dλλλP (λλλ, τ)Λ̂(λλλ) = −

1

2

∫

dλλλP (λλλ, τ)
(

ĤΛ̂(λλλ) + Λ̂(λλλ)Ĥ
)

Compare both integrands
d

dτ
P (λλλ, τ) = L′[P (λλλ, τ)]

Partial integration

Assume no boundary terms!
∫

dλλλ
d

dτ
P (λλλ, τ)Λ̂(λλλ) =

∫
dλλλL′[P (λλλ, τ)]Λ̂(λλλ)

∫
dλλλ

d

dτ
P (λλλ, τ)Λ̂(λλλ) =

∫
dλλλP (λλλ, τ)L[Λ̂(λλλ)] Contains first and 

second order derivatives.

Derivation of the SDEs

Differential properties

ĉ
†T

ĉ
T Λ̂ = nΛ̂ + (1 − n)

∂Λ̂

∂n
n



Derivation of the SDEs

Fokker-Planck eq:

Integration: Forward Euler, (semi-) implicit, higher order schemes

Noise terms (Wiener 
increments) drawn from 

normal distribution
〈dWk(τ)dWk′(τ ′)〉 = dτδkk′δττ ′

〈dWk(τ)〉 = 0

d

dτ
P (λλλ, τ) = L′[P (λλλ, τ)]

SDE:
(Stratonovich)

Drift term Diffusion term

dλα(τ) = Aα(λλλ)dτ +
∑

k

B
k
α(λλλ)dWk(τ)

L
′
= −

∑

α

∂

∂λα
Aα +

1

2

∑

αβz

∂

∂λα
B

z
α

∂

∂λβ
B

z
β

SDEs are not unique! There are several “gauge” choices.

• Does not change the Hamiltonian. But changes the SDE! 

• Crucial trick for Hubbard model to get positive weights!

No explicit manifestation of the negative sign problem!

n̂
2

iiσ − n̂iiσ = 0



Example: Hubbard model

Final form of the SDEs:

full matrix-matrix multiplication

Weight grows exponentially, 
but remains positive

2N2+1 coupled equations:

ĤHub = −t
∑

〈i,j〉,σ

n̂ijσ + U
∑

i

n̂ii↑n̂ii↓ − µ
∑

i,σ

n̂iiσ

ĉ
†
iσ ĉjσ
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Results for Hubbard model

2x2 system, U=1, t=1, <n>=0.5, 
40’000 trajectories

OK!

Change integration 
timestepUse higher order 

integrator

Use different 
quantization axis

additional noise more trajectories

2x2 system, U=4, t=1, 
<n>=0.875, 480000 trajectories
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Systematic 
error!



Fat tailed distributions 

Some Monte Carlo measurements seem 
to be ill defined (diverging error bars). 

➡ Fat tailed distributions can 
become a problem in derivation of 
SDE’s: Boundary Terms!

➡ Assumption is 
wrong!
➡ SDE’s are no 
longer valid!!!!

+ boundary terms

Partial integration

Assume no boundary terms!

Go back to derivation: Fat power law tails!
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Simulation
slope: −2.7

Diverging variance of the 
transverse spin susceptibility
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This is a known problem! 

Gilchrist, Gardiner and Drummond, 
PRA, 55(4), 3014, 1997:
Boundary terms found in some examples: 
single-mode laser, anharmonic oscillator, ...

Boundary terms 

Appearance of power law 
tail at low temperatures

Another indicator: spiking trajectories!
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➡ presence of nearly singular 
trajectories

➡ indicator, when boundary terms 
become non-negligible

➡ Consistency: systematic 
errors appear only after a certain ß.



‣ “Fermi” gauges (like                         ) 

‣ Additional noise terms (diffusion gauge)

‣ Arbitrary drift functions (drift gauges)

‣ Change basis

Possible solutions
• The SDE’s are not unique: Use gauges to change distribution P!

• In case of small systematic errors, use a symmetry 
projection scheme to calculate ground state properties

Assaad et al., PRB 72, 224518 (2005)

➡ work in progress

n̂
2

iiσ − n̂iiσ = 0

dλα(τ) = Aαdτ +
∑

k

Bk
α [dWk(τ) − gkdτ ]

dΩ(τ) = A0dτ + ΩgkdWk(τ) BUT AT THE SAME TIME 
WEIGHTS HAVE TO 
REMAIN POSITIVE!!!



Symmetry breaking
• The SU(2) spin symmetry is not 
preserved in the cases with systematic 
errors
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(a)
‣ Ground state properties (not finite 
temperature)

‣ Projection is done a posteriori  

‣ Good agreement in many cases

‣                           measures the overlap 
between density matrix and ground state 
sector

Trρ̂Pr/Trρ̂sim

Idea: Take density matrix from 
simulation and project it onto the 
ground state symmetry sector.

ρ̂Pr = P̂ ρ̂simP̂ †PGQMC

Mizusaki, Imada, Phys. Rev. B 69, 125110 (2004)



Results: Hubbard ladders
• Simulation of 2xL and 3xL Hubbard ladders 
with different fillings n, interaction U

• Comparison of GQMC and PGQMC to 
Density Matrix Renormalization Group 
(DMRG) results (high precision)

Results agree 
with DMRG

8x2, U/t=4, ntot=14, PGQMC
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Conclusion
• Once more: the sign problem is not solved (yet).

• GQMC is an elegant finite temperature method for fermions. 
Further application examples are needed!

• Systematic errors in GQMC in SOME cases. But we have 
indicators for their presence: fat tailed distributions, spiking 
trajectories, broken symmetries...

• Fat tails may disappear with appropriate choice of gauges.

• Symmetry projection allows to obtain ground state properties. 
In many cases it corrects the systematic errors of GQMC. There 
are examples, where we could go beyond auxiliary field QMC! 



Outlook: Recent news
• Projection method can be incorporated into the sampling.  
Aimi and Imada, cond-mat/0704.3792

• Importance sampling (Metropolis algorithm) which favors the 
ground state symmetry sector

• Better results than with projection a posteriori. Promising!

• Projected weights can become negative. Sign problem? For 
doped systems with large U (>8).

• Work in progress!


