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1. Fundamentals of Hall Effect

(Left) The ordinary Hall effect is caused by deflection of carriers (electrons or holes) moving along an applied electric 
field by an applied magnetic field. Charge accumulation results in a Hall voltage, but there is no net spin accumulation 
because there are the same number of spin up carriers as spin down ones.

(Middle) The anomalous Hall effect is the result of spin-dependent deflection of carrier motion, which produces a Hall 
voltage and spin accumulation at the edges. 

(Right) The pure spin Hall effect is caused by spin-dependent deflection of carriers and produces no Hall voltage when 
the numbers of deflected spin up and spin down electrons are the same but gives rise to spin accumulation. For 
simplicity, only the motion of a few carriers is shown in the figure panels. 
CREDIT: P. HUEY/SCIENCE



1.2 Spin Hall effect

charge current:charge current: vector

spin current:spin current: tensor



In presence of spin-orbit coupling, the applied longitudinal electric 
field leads to a transverse motion of spins, with the spin-up and 
spin-down carriers transporting oppositely to each other, thus a 
spin current is created perpendicular to the electric field.

Spin hall effect via electric field in semiconductors

x: electric field
y: current direction
z: spin direction
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a) (3D) Luttinger Model, S. Murakami,N.Nagaosa, S-. C. Zhang, Science (2003);

b) (2D) Rashba Model, J. Sinova, et al, PRL (2004).



2. Spin Hall effect in atoms

By now theoretical studies on quantum spin Hall effect in solid systems are mainly included in 1) metallic 
graphene, 2) semiconductor system with strain gradients and 3) HgTe/CdTe semiconductor quantum 
wells. However, since the spin-orbit interaction in graphene is too small, the theoretical proposals in such 
systems are difficult to be achieved in experiment. Quantum spin Hall regime is also very difficult to 
achieve in semiconductor systems with strain gradients, due to the demanding requirement of a large strain 
gradient with special configuration and a very low electron density with a clean environment.

Quantum Spin hall effect?
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2.2 Quantum Spin hall effect in 
fermionic atomic gas

Optical coherent control method provides a remarkable controllability in the 
dynamics of atomic spin states.  Furthermore, parameters of cold atomic systems, 
e.g. atomic number, atom-atom interacting strength, can be well controlled in current 
experiments. This makes it possible to control the atomic spin propagation through 
optical methods, and further demonstrate the quantum spin hall effect (SHE) in 
neutral atomic system.

Electron: internal spin states, can be manipulated by magnetic 
field, spin-orbit coupling etc.

Atomic spin: internal angular-momentum states of atoms, can be 
manipulated by optical coupling.



Model: A four-level system with 6Li atoms 
interacting with two angular momentum
optical fields



Hamiltonian



Diagonalization of the interaction Hamiltonian
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Then the four eigenstates read: Large detuning condition:

Under adiabatic condition:



This is also equivalent to the system that an ensemble of two-flavor oppositely 
charged particles interact with one external effective gauge field.

Effective Hamiltonian

Considering the large detuning case, the effective Hamiltonian :

AAupup

AAdowndown

A Landau level structure for 
each spin orientation, essentially 
a direct analogy of SHE.
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Important features

1) Conserved spin current. Continuity equation:

conserved!zs
kJ



2) Topological properties

n: winding number
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Uniform effective electric and 
magnetic field

Pure spin current !Pure spin current !

For this we set the parameters:

AAupup

BBeffeff

BBeffeff

AAdowndown



The spin/massive currents can be calculated with perturbation theory

Quantization of spin Hall 
conductivity in optical lattice:
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2.3 Fractional Spin Hall Effect
---from Fermionic system to Bosonic system

Realization of four-level bosonic system with 87Rb atoms
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Similar to the former case, we 
consider here large detuning case:

And the slowly-varying atomic field 
amplitudes are introduced by:
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Similar to the Fermionic system, the Hamiltonian of the present system is:

Hamiltonian

)(4)( )3(2 βα
αβαβ δπ r'rr'r, −= aU

where the atom-atom scattering potential reads: Atom-atom interaction part!



Quasi two-dimensional system
We can apply a tight harmonic confinement along z-axis with frequency      such that z-axial 
ground state energy far exceeds any other transverse energy scale, yielding a quasi-2D system:
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Here B-field and angular-momentum part read:

And the 2D effective interacting constant: mag z /8~ 23ωπ=
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Lowest-Landau-level (LLL) condition

(A). The energy corresponding to angular momentum should be smaller than the 
interaction energy per particle:

(B). The interaction energy per particle should also be smaller than the spacing between 
Landau levels:

To diagonalize the Hamiltonian and study the many-body Hamiltonian of this system, we shall 
consider the LLL condition. Energy value of the Hamiltonian is determined by three parts: (1) 
Landau Level; (2) angular-momentum part,        ; (3) atom-atom interaction. Thus the LLL 
condition is determined by the following two requirements:

±
LH

;int landauεε <<

;intεε <<angular

Under this condition, we can use the wave function of the lowest landau level to describe ground 
state of the present system.



Many-body function of the present system
The Hamiltonian can be diagonalized under LLL condition, and the many-body function of the 
ground state has the following form:
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Here w>0 is a positive integer, and                                     are coordinates of spin-up and spin-
down atoms, respectively.                  is a homogeneous polynomial. One can verify the above an 
eigenstate of Hamiltonian with the eigenvalue:
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Here M+>0, M-<0 are respectively the angular-momenta of all spin-up atoms and all spin-down 
atoms. As a result, the ground state of our system is determined by the angular momentum 
difference between spin-up and spin-down atoms.



The first type of ground state of the present system corresponds to w=1 and .1),( * =ϖzQ

Ground State I
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Properties
The first type of ground state has the following properties:

• Firstly, this state is analogous to the (221) type Halperin’s function of two different spin 
states, but here the two spins experience opposite effective magnetic fields;

• Thirdly, one can verify that the filling factor of type I ground state is:

• Secondly, the 1st type of ground state is antisymmetric upon the interchange                   
reflecting the |S+> chiral - |S-> chiral antisymmetry;

*ϖ↔z

3/1=v

• Finally, the angular momentum of spin-up or spin-down atoms or their total angular 
momentum is not conserved, but their difference is conserved!



Ground State II

The second type of ground state of the present system corresponds to w=2 and .1),( * =ϖzQ
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Properties
The second type of ground state has the following properties:

• Firstly, this state is analogous to the (222) type Halperin’s function of two different spin 
states, but here the two spins experience opposite effective magnetic fields;

• Thirdly, one can verify that the filling factor of the type II ground state is:

• Secondly, the 2nd type of ground state is symmetric upon the interchange                           
reflecting the |S+> chiral - |S-> chiral symmetry;
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4/1=v



Restrictions in the LLL condition

The requirements of the LLL condition can then read:

Energy scale corresponding to (1) Landau level spacing; (2) atom-atom interaction; and (3) 
angular-momentum part,          are respectively obtained by and should satisfy the relation:±
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From the inequality, our numerical result implies that 
for the strongly interacting boson atomic gas (              
), the number of atoms can be as large as N~102~3

without violating the LLL condition, and for the 
weakly interacting case (                 ) this number is 
about N~ 101~2. We therefore expect the many body 
functions of the first type and the second type of 
ground states obtained here can be reached with a few 
cold bosonic atoms via optical method.

mg /~~ 2

mg /1.0~~ 2



Summary
Spin Hall effect can be demonstrated in atomic system through optical 
methods, where the created spin current is conserved and may be able 
to exhibit topological properties.

Spin Hall effect in cold bosonic atomic gas has very different 
significance from that in cold fermionic atomic system. In bosonic 
system, we have obtained fractional spin Hall effect (FSHE), and have 
studied intriguing properties of many-body function of the cold atoms.

This report is based on the papers: 
Xiong-Jun Liu, Xin Liu, L. C. Kwek and C. H. Oh, Phys. Rev. Lett. 98, 026602 (2007)
Xiong-Jun Liu, Xin Liu, L. C. Kwek and C. H. Oh, Submitted, cond-mat/0701506.



Thank you!
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