Quantum Phase Transitions in Optical Cavity QED

Felipe Dimer Howard Carmichael SP Benoit Estienne (Paris) Sarah Morrison (Innsbruck)

Volume 46A, number 1

PHYSICS LETTERS

19 November 1973

HIGHER ORDER CORRECTIONS TO THE DICKE SUPERRADIANT PHASE TRANSITION

H.J. CARMICHAEL, C.W. GARDINER and D.F. WALLS

School of Science, University of Waikato, Hamilton, New Zealand

Received 4 September 1973

The phase transition in the Dicke model for superradiance obtained by Hepp and Lieb and Wang and Hioe is modified by eliminating the rotating wave approximation.

Outline

- Single-mode Dicke model
 - equilibrium phase transition
 - T=0 quantum phase transition
- Proposed realisation in optical cavity QED
 - Dimer, Estienne, Parkins & Carmichael, PRA 75, 013804 (2007)
 - Raman transition scheme
 - open system dynamics non-equilibrium phase transition
 - monitoring the system: cavity output field
 - critical behaviour of quantum entanglement
- Other possibilities for effective spin systems

Dicke Model

- *N* two-level atoms at fixed positions in a cavity of volume *V* (constant coupling strength)
- Inter-atomic separations large ⇒ neglect direct interactions between atoms
- However, the atoms interact with the same radiation field
 ⇒ they cannot be treated as independent, must be treated as a
 single quantum system

Dicke, Phys. Rev. 93, 99 (1954)

The Single-Mode Dicke Model

• *N* two-level atoms coupled identically to a single EM field mode

$$H_{\text{Dicke}} = \omega a^{\dagger} a + \omega_0 J_z + \frac{\lambda}{\sqrt{N}} \left(a + a^{\dagger} \right) \left(J^{-} + J^{+} \right)$$

- Coupling constant $\lambda \propto \sqrt{\frac{N}{V}}$
- Collective atomic operators

$$J^{-} = \sum_{i=1}^{N} |0_{i}\rangle \langle 1_{i}|, \quad J_{z} = \frac{1}{2} \sum_{i=1}^{N} (|1_{i}\rangle\langle 1_{i}| - |0_{i}\rangle\langle 0_{i}|)$$

Phase Transition in the Dicke Model

Hepp & Lieb, Phys. Rev. A 8, 2517 (1973)
Hioe, Phys. Rev. A 8, 1440 (1973)
Carmichael, Gardiner & Walls, Phys. Lett. 46A, 47 (1973)

Thermodynamic limit $N, V \rightarrow \infty$, N/V finite

• Phase transition to superradiant state for

$$\lambda > \lambda_c = \frac{\sqrt{\omega\omega_0}}{2}, \quad T < T_c \text{ where } \frac{\omega\omega_0}{4\lambda^2} = \tanh\left(\frac{\omega_0}{2k_BT_c}\right)$$

"Order Parameters" (*T*=0)

(Dashed lines: finite atom number, *N*=1,2,3,6,10)

But ... no equilibrium phase transition with A² term included

Phase Transitions, Two-Level Atoms, and the A² Term

K. Rzążewski* and K. Wódkiewicz* Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, and Institute of Theoretical Physics, Warsaw University, 00–681, Warsaw, Poland

and

W. Zakowicz Institute of Nuclear Research, 00-681, Warsaw, Poland (Received 11 June 1975)

We show that the presence of the recently discovered phase transition in the Dicke Hamiltonian is due entirely to the absence of the A^2 terms from the interaction Hamiltonian.

Consider the well-studied Hamiltonian

$$H_1 = \frac{\hbar \omega_{bs}}{2} \sum_{j=1}^N \sigma_j^s + \hbar \omega a^{\dagger} a + \frac{\lambda}{\sqrt{N}} \sum_{j=1}^N (\sigma_j^{\dagger} a + \sigma_j^{\dagger} a^{\dagger}).$$
(1)

This Hamiltonian describes the collective interaction of a single mode of radiation (frequency ω) with a single transition between levels a and b (frequency $\omega_{bo} > 0$) in N identical two-level atoms. Operators a and a^{\dagger} denote here the annihilation and creation operators of the photons; $\sigma_j^{\ s}, \sigma_j^{\ s}, \sigma_j^{\ s}, \sigma_j^{\ s}$ are Pauli matrices used to describe the *j*th atom. The Hamiltonian (1), sometimes called the Dicke Hamiltonian,¹ may be derived² from the more familiar one

$$H = \sum_{j=1}^{N} \left[\frac{1}{2m} \left(\tilde{\mathbf{p}}_{j} - \frac{e}{c} \vec{\mathbf{A}}(\tilde{\mathbf{r}}_{j}) \right)^{2} + V(\tilde{\mathbf{r}}_{j}) \right] + \hbar \omega a^{\dagger} a \qquad (2)$$

432

Dicke Model Quantum Phase Transition (T=0)

Emary & Brandes, Phys. Rev. E 67, 066203 (2003)

$$H_{\text{Dicke}} = \omega a^{\dagger} a + \omega_0 J_z + \frac{\lambda}{\sqrt{N}} (a + a^{\dagger}) (J^{-} + J^{+})$$

Holstein-Primakoff representation of angular momentum operators

$$J^{-} = \left(\sqrt{N - b^{+}b}\right)b, \quad J_{z} = b^{+}b - \frac{N}{2}, \quad [b, b^{+}] = 1$$

- Large-N expansion of H_{Dicke}
 - $\rightarrow H_{\text{normal}}, H_{\text{SR}}$ quadratic in (a,a^+,b,b^+)
 - \rightarrow diagonalise (Bogoliubov transformation)
 - \rightarrow excitation energies

Excitation Energies

$$(\omega = \omega_0 = 1, \lambda_c = 0.5)$$

Note: Derivation of $\{H_{normal}, H_{SR}\}$

$$\lambda < \lambda_c : \quad J^- \to \sqrt{N b}$$

 $\lambda > \lambda_c$: $a \to a \pm \alpha$, $b \to b \pm \beta$ (coherent displacements) then expand in N (i.e. linearisation about semiclassical amplitudes) $\langle a^+a \rangle = |\alpha|^2$, $\langle J_z \rangle = |\beta|^2 - \frac{N}{2}$

Note: Ground State "Wave Function"

(*N* = 10 atoms)

 $\lambda/\lambda_c = 0.4$ $\lambda/\lambda_c = 1.0$ y O -4.5 4.5 $\lambda/\lambda_c = 1.2$ $\lambda/\lambda_c = 1.4$ y 0 -4.5 -4.5 4.5-4.5 Ω ۵ 4.5 х х

 $|\psi(x,y)|^2$

Transition from localised state to delocalised "Schrödinger Cat" state

$$\begin{split} \left| \Psi_{g} \right\rangle &\sim \left| \alpha \right\rangle \right| - N/2 \rangle_{x} + \left| -\alpha \right\rangle \left| N/2 \right\rangle_{x} \\ \text{where} \\ J_{x} \left| \pm N/2 \right\rangle_{x} &= \pm N/2 \left| \pm N/2 \right\rangle_{x} \end{split}$$

Entanglement properties

Critical behaviour of atom-field and atom-atom quantum entanglement at transition

Lambert, Emary & Brandes, Phys. Rev. Lett. 92, 073602 (2004)

Possible Realisation?

Issues to confront:

- To date, $\lambda \ll \{\omega, \omega_0\}$ in cavity QED experiments
- Atomic spontaneous emission, cavity mode losses
- And the A² issue

Our approach:

- Raman scheme, $\{\omega, \omega_0\} \propto \{\text{level shifts, Raman detunings}\}, \lambda \propto \text{Raman transition rate}$
- Open-system dynamics

 \Rightarrow non-equilibrium (dynamical) quantum phase transition

Dimer, Estienne, Parkins & Carmichael, PRA 75, 013804 (2007)

Possible Realisation in Optical Cavity QED

- *N* atoms identically coupled to single optical (ring) cavity mode
- Lasers + cavity field drive two distinct Raman transitions between stable ground states |0> and |1>

Model: Adiabatic elimination of atomic excited states

Effective Hamiltonian (rotating frame)

$$H = \left[\delta_{cav} + \frac{1}{2} N \left(\frac{g_r^2}{\Delta_r} + \frac{g_s^2}{\Delta_s} \right) \right] a^+ a + \left(\frac{g_r^2}{\Delta_r} - \frac{g_s^2}{\Delta_s} \right) a^+ a J_z$$
$$+ \left(\frac{\Omega_r^2}{4\Delta_r} - \frac{\Omega_s^2}{4\Delta_s} + \delta' \right) J_z$$
$$+ \frac{g_r \Omega_r}{2\Delta_r} \left(a J^+ + a^+ J^- \right) + \frac{g_s \Omega_s}{2\Delta_s} \left(a^+ J^+ + a J^- \right)$$

$$\delta_{cav} = \omega_{cav} - \frac{1}{2} (\omega_{Ls} + \omega_{Lr})$$
$$\delta' = \omega_1 - \frac{1}{2} (\omega_{Ls} - \omega_{Lr})$$

Choose
$$\frac{g_s^2}{\Delta_s} = \frac{g_r^2}{\Delta_r}, \quad \frac{g_r \Omega_r}{2\Delta_r} = \frac{g_s \Omega_s}{2\Delta_s}$$

then ...

Effective (Dissipative) Dicke Model

Master equation for atom-field density operator ρ :

$$\dot{\rho} = -i[H,\rho] + \kappa (2a\rho a^{+} - a^{+}a\rho - \rho a^{+}a)$$

where

W

$$H = \omega a^{\dagger} a + \omega_0 J_z + \frac{\lambda}{\sqrt{N}} \left(a + a^{\dagger}\right) \left(J^{-} + J^{+}\right)$$

ith
$$\omega = \delta_{cav} + \frac{Ng_r^2}{\Delta_r}, \quad \omega_0 = \delta', \quad \lambda = \frac{\sqrt{Ng_r\Omega_r}}{2\Delta_r}$$

"tunable" such that $\omega \sim \omega_0 \sim \lambda$

Potential Experimental Parameters?

- Ring cavity / many atoms (e.g., Tübingen, Hamburg, ⁸⁵Rb)
 - $g_i/2\pi \approx 50 \text{ kHz}, \quad \kappa/2\pi \approx 20 \text{ kHz}, \quad N \approx 10^6$

$$\frac{\Omega_i}{\Delta_i} \approx 0.005 \quad \Rightarrow \quad \frac{\lambda}{2\pi} \approx \sqrt{N} \times 0.125 \text{ kHz} \approx 125 \text{ kHz}$$

• Strong coupling CQED / few atoms (e.g., Georgia Tech, ⁸⁷Rb)

 $g_i/2\pi \approx 30 \text{ MHz}, \quad \kappa/2\pi \approx 2 \text{ MHz}, \quad N \approx 100$

$$\frac{\Omega_i}{\Delta_i} \approx 0.05 \quad \Rightarrow \quad \frac{\lambda}{2\pi} \approx \sqrt{N} \times 0.75 \text{ MHz} \approx 7.5 \text{ MHz}$$

Holstein-Primakoff Analysis ($N \rightarrow \infty$): Normal Phase

$$\dot{\rho} = -i[H^{(1)}, \rho] + \kappa (2a\rho a^{+} - a^{+}a\rho - \rho a^{+}a)$$
with
$$H^{(1)} = \omega a^{+}a + \omega_{0}b^{+}b + \lambda (a + a^{+})(b + b^{+})$$
for
$$\lambda < \lambda_{c} = \frac{1}{2}\sqrt{\frac{\omega_{0}}{\omega}(\kappa^{2} + \omega^{2})}$$

$$\kappa = 0.1, 0.2, 0.5$$

$$\kappa = 0.1, 0.2, 0.5$$

Holstein-Primakoff Analysis ($N \rightarrow \infty$): Superradiant Phase

$$\begin{split} a &\rightarrow c \pm \alpha, \quad b \rightarrow d \mp \beta \\ \dot{\rho} &= -i \Big[H^{(2)}, \rho \Big] + \kappa \Big(2c\rho c^+ - c^+ c\rho - \rho c^+ c \Big) \\ &\text{with} \\ H^{(2)} &= \omega c^+ c + \frac{\omega_0}{2\mu} (1+\mu) d^+ d + \frac{\omega_0 (1-\mu) (3+\mu)}{8\mu (1+\mu)} \Big(d^+ + d \Big)^2 \\ &+ \lambda \mu \sqrt{\frac{2}{1+\mu}} \Big(c^+ + c \Big) \Big(d^+ + d \Big), \qquad \mu = \frac{\lambda_c^2}{\lambda^2} \\ &\text{for} \\ \lambda &> \lambda_c = \frac{1}{2} \sqrt{\frac{\omega_0}{\omega}} \Big(\kappa^2 + \omega^2 \Big) \end{split}$$

Field and Atomic Amplitudes α and β

$$\alpha = \pm \frac{\lambda \omega_0}{2\lambda_c^2} \sqrt{\frac{N}{4} \left(1 - \frac{\lambda_c^4}{\lambda^4}\right) \left(1 + i\frac{\kappa}{\omega}\right)}, \qquad \beta = \pm \sqrt{\frac{N}{2} \left(1 - \frac{\lambda_c^2}{\lambda^2}\right)}$$

Spectra of the Light Emitted from the Cavity

Eigenvalues of the linearised model

Probe transmission spectra ($\omega = \omega_0 = 1, \kappa = 0.2$)

Homodyne detection (quadrature fluctuation spectra)

Atom-field entanglement

Gaussian continuous variable state: quadrature/EPR operators

$$\begin{aligned} X_{a}^{\theta} &= \frac{1}{2} \Big(a e^{-i\theta} + a^{+} e^{i\theta} \Big), \quad X_{b}^{\phi} &= \frac{1}{2} \Big(b e^{-i\phi} + b^{+} e^{i\phi} \Big) \\ u &= X_{a}^{\theta} + X_{b}^{\phi}, \quad v = X_{a}^{\theta + \pi/2} - X_{b}^{\phi + \pi/2} \end{aligned}$$

Possible to deduce from cavity output field

$$\left\langle \left(\Delta u\right)^2 \right\rangle + \left\langle \left(\Delta v\right)^2 \right\rangle < 1$$

Other possibilities for effective spin systems

- Two cavity modes + off-resonant Raman transitions
- Effective spin-spin interactions:

$$H_{\text{eff}} = -2hJ_z - \frac{2\lambda}{N} \left(J_x^2 + \gamma J_y^2\right), \quad -1 < \gamma < 1$$

(Lipkin-Meshkov-Glick model)

- λ » dissipative rates possible
- <u>1st or 2nd order quantum phase transitions</u>

Example:
("antiferromagnetic
$$H_{eff} = -2hJ_z - \frac{2\lambda}{N}J_x^2$$
, $\underline{\lambda} < 0$

$$\dot{\rho} = -i[H_{\rm eff},\rho] + \frac{4\Gamma_a}{N} (2J_x \rho J_x - J_x^2 \rho - \rho J_x^2) + \frac{\Gamma_b}{N} (2J_-\rho J_+ - J_+ J_-\rho - \rho J_+ J_-)$$

1st-order quantum phase transition

Probe transmission spectrum

Bipartite entanglement criterion / spin variances

$$C_{\varphi} = 1 - \frac{4}{N} \left\langle \Delta J_{\varphi}^{2} \right\rangle - \frac{4}{N^{2}} \left\langle J_{\varphi} \right\rangle^{2} > 0, \quad J_{\varphi} = J_{x} \sin \varphi + J_{y} \cos \varphi$$

Time-dependence of entanglement, $C_{R}(t)$

Note: Cavity output field $b_{out} \propto J_{-}$ so C_{R} can be deduced from measurable correlation functions

Summary

- Proposed realisation of Dicke model in cavity QED for study of (non-equilibrium) quantum phase transition
- Well-defined cavity output provides measurable signatures/properties of the phase transition
- Other effective spin models possible

Further possibilities ...

- Finite-*N* systems
 - small \rightarrow large quantum noise
 - entangled state preparation
 and characterisation
 - measurement back-action

- Combination with optical-lattice many-body systems (long-range + short-range interactions)
- Disordered systems